Metamath Proof Explorer


Theorem hdmap14lem10

Description: Part of proof of part 14 in Baer p. 49 line 38. (Contributed by NM, 3-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem8.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem8.q + = ( +g𝑈 )
hdmap14lem8.t · = ( ·𝑠𝑈 )
hdmap14lem8.o 0 = ( 0g𝑈 )
hdmap14lem8.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap14lem8.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem8.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem8.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem8.d = ( +g𝐶 )
hdmap14lem8.e = ( ·𝑠𝐶 )
hdmap14lem8.p 𝑃 = ( Scalar ‘ 𝐶 )
hdmap14lem8.a 𝐴 = ( Base ‘ 𝑃 )
hdmap14lem8.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem8.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem8.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap14lem8.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap14lem8.f ( 𝜑𝐹𝐵 )
hdmap14lem8.g ( 𝜑𝐺𝐴 )
hdmap14lem8.i ( 𝜑𝐼𝐴 )
hdmap14lem8.xx ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
hdmap14lem8.yy ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑌 ) ) = ( 𝐼 ( 𝑆𝑌 ) ) )
hdmap14lem8.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
Assertion hdmap14lem10 ( 𝜑𝐺 = 𝐼 )

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem8.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem8.q + = ( +g𝑈 )
5 hdmap14lem8.t · = ( ·𝑠𝑈 )
6 hdmap14lem8.o 0 = ( 0g𝑈 )
7 hdmap14lem8.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap14lem8.r 𝑅 = ( Scalar ‘ 𝑈 )
9 hdmap14lem8.b 𝐵 = ( Base ‘ 𝑅 )
10 hdmap14lem8.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 hdmap14lem8.d = ( +g𝐶 )
12 hdmap14lem8.e = ( ·𝑠𝐶 )
13 hdmap14lem8.p 𝑃 = ( Scalar ‘ 𝐶 )
14 hdmap14lem8.a 𝐴 = ( Base ‘ 𝑃 )
15 hdmap14lem8.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap14lem8.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap14lem8.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 hdmap14lem8.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap14lem8.f ( 𝜑𝐹𝐵 )
20 hdmap14lem8.g ( 𝜑𝐺𝐴 )
21 hdmap14lem8.i ( 𝜑𝐼𝐴 )
22 hdmap14lem8.xx ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
23 hdmap14lem8.yy ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑌 ) ) = ( 𝐼 ( 𝑆𝑌 ) ) )
24 hdmap14lem8.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
25 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
26 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
27 17 eldifad ( 𝜑𝑋𝑉 )
28 18 eldifad ( 𝜑𝑌𝑉 )
29 3 4 lmodvacl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
30 26 27 28 29 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
31 1 2 3 5 8 9 10 12 25 13 14 15 16 30 19 hdmap14lem2a ( 𝜑 → ∃ 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) )
32 16 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 17 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
34 18 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
35 19 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐹𝐵 )
36 20 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐺𝐴 )
37 21 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐼𝐴 )
38 22 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
39 23 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑌 ) ) = ( 𝐼 ( 𝑆𝑌 ) ) )
40 24 3ad2ant1 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
41 simp2 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑔𝐴 )
42 simp3 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) )
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 hdmap14lem9 ( ( 𝜑𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐺 = 𝐼 )
44 43 rexlimdv3a ( 𝜑 → ( ∃ 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) → 𝐺 = 𝐼 ) )
45 31 44 mpd ( 𝜑𝐺 = 𝐼 )