Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem8.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem8.q |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap14lem8.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
|
hdmap14lem8.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
hdmap14lem8.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
hdmap14lem8.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
9 |
|
hdmap14lem8.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
10 |
|
hdmap14lem8.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmap14lem8.d |
⊢ ✚ = ( +g ‘ 𝐶 ) |
12 |
|
hdmap14lem8.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
13 |
|
hdmap14lem8.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
14 |
|
hdmap14lem8.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
15 |
|
hdmap14lem8.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hdmap14lem8.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hdmap14lem8.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
hdmap14lem8.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
hdmap14lem8.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
20 |
|
hdmap14lem8.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
21 |
|
hdmap14lem8.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐴 ) |
22 |
|
hdmap14lem8.xx |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
23 |
|
hdmap14lem8.yy |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑌 ) ) = ( 𝐼 ∙ ( 𝑆 ‘ 𝑌 ) ) ) |
24 |
|
hdmap14lem8.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
25 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
26 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
27 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
28 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
29 |
3 4
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
31 |
1 2 3 5 8 9 10 12 25 13 14 15 16 30 19
|
hdmap14lem2a |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) |
32 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
34 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐹 ∈ 𝐵 ) |
36 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐺 ∈ 𝐴 ) |
37 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐼 ∈ 𝐴 ) |
38 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
39 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑌 ) ) = ( 𝐼 ∙ ( 𝑆 ‘ 𝑌 ) ) ) |
40 |
24
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝑔 ∈ 𝐴 ) |
42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42
|
hdmap14lem9 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) ) → 𝐺 = 𝐼 ) |
44 |
43
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · ( 𝑋 + 𝑌 ) ) ) = ( 𝑔 ∙ ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) ) → 𝐺 = 𝐼 ) ) |
45 |
31 44
|
mpd |
⊢ ( 𝜑 → 𝐺 = 𝐼 ) |