| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem8.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem8.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem8.q | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem8.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem8.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem8.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | hdmap14lem8.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | hdmap14lem8.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | hdmap14lem8.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmap14lem8.d | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem8.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem8.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 14 |  | hdmap14lem8.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem8.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem8.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem8.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem8.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hdmap14lem8.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 20 |  | hdmap14lem8.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 21 |  | hdmap14lem8.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐴 ) | 
						
							| 22 |  | hdmap14lem8.xx | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) )  =  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 24 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 25 | 18 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 26 | 1 2 3 7 16 24 25 | dvh3dim | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 27 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 28 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 29 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 30 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 31 | 1 2 3 5 8 9 10 12 27 13 14 15 28 29 30 | hdmap14lem2a | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ∃ 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) ) | 
						
							| 32 |  | simp11 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝜑 ) | 
						
							| 33 | 32 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 34 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 35 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 36 | 32 35 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑈  ∈  LMod ) | 
						
							| 37 | 3 34 7 35 24 25 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 38 | 32 37 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 |  | simp12 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 40 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 41 | 6 34 36 38 39 40 | lssneln0 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑧  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 42 | 32 17 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 43 | 32 19 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 44 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑔  ∈  𝐴 ) | 
						
							| 45 | 32 20 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝐺  ∈  𝐴 ) | 
						
							| 46 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) ) | 
						
							| 47 | 32 22 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 48 | 1 2 16 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 49 | 32 48 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑈  ∈  LVec ) | 
						
							| 50 | 32 24 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 51 | 32 25 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 52 | 3 7 49 39 50 51 40 | lspindpi | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑋 } )  ∧  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 53 | 52 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 42 43 44 45 46 47 53 | hdmap14lem10 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑔  =  𝐺 ) | 
						
							| 55 | 32 18 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 56 | 32 21 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝐼  ∈  𝐴 ) | 
						
							| 57 | 32 23 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑌 ) )  =  ( 𝐼  ∙  ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 58 | 52 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 55 43 44 56 46 57 58 | hdmap14lem10 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝑔  =  𝐼 ) | 
						
							| 60 | 54 59 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) ) )  →  𝐺  =  𝐼 ) | 
						
							| 61 | 60 | rexlimdv3a | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  ( ∃ 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑧 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑧 ) )  →  𝐺  =  𝐼 ) ) | 
						
							| 62 | 31 61 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑉  ∧  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) )  →  𝐺  =  𝐼 ) | 
						
							| 63 | 62 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  𝑉 ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  →  𝐺  =  𝐼 ) ) | 
						
							| 64 | 26 63 | mpd | ⊢ ( 𝜑  →  𝐺  =  𝐼 ) |