| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem8.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem8.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem8.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem8.q |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmap14lem8.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmap14lem8.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | hdmap14lem8.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | hdmap14lem8.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmap14lem8.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmap14lem8.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | hdmap14lem8.d |  |-  .+b = ( +g ` C ) | 
						
							| 12 |  | hdmap14lem8.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hdmap14lem8.p |  |-  P = ( Scalar ` C ) | 
						
							| 14 |  | hdmap14lem8.a |  |-  A = ( Base ` P ) | 
						
							| 15 |  | hdmap14lem8.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem8.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem8.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem8.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hdmap14lem8.f |  |-  ( ph -> F e. B ) | 
						
							| 20 |  | hdmap14lem8.g |  |-  ( ph -> G e. A ) | 
						
							| 21 |  | hdmap14lem8.i |  |-  ( ph -> I e. A ) | 
						
							| 22 |  | hdmap14lem8.xx |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 23 |  | hdmap14lem8.yy |  |-  ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 24 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 25 | 18 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 26 | 1 2 3 7 16 24 25 | dvh3dim |  |-  ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) ) | 
						
							| 27 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 28 | 16 | 3ad2ant1 |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 29 |  | simp2 |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> z e. V ) | 
						
							| 30 | 19 | 3ad2ant1 |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> F e. B ) | 
						
							| 31 | 1 2 3 5 8 9 10 12 27 13 14 15 28 29 30 | hdmap14lem2a |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> E. g e. A ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) | 
						
							| 32 |  | simp11 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ph ) | 
						
							| 33 | 32 16 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 34 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 35 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 36 | 32 35 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> U e. LMod ) | 
						
							| 37 | 3 34 7 35 24 25 | lspprcl |  |-  ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) | 
						
							| 38 | 32 37 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) | 
						
							| 39 |  | simp12 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> z e. V ) | 
						
							| 40 |  | simp13 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> -. z e. ( N ` { X , Y } ) ) | 
						
							| 41 | 6 34 36 38 39 40 | lssneln0 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> z e. ( V \ { .0. } ) ) | 
						
							| 42 | 32 17 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 43 | 32 19 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> F e. B ) | 
						
							| 44 |  | simp2 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g e. A ) | 
						
							| 45 | 32 20 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> G e. A ) | 
						
							| 46 |  | simp3 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) | 
						
							| 47 | 32 22 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 48 | 1 2 16 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 49 | 32 48 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> U e. LVec ) | 
						
							| 50 | 32 24 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> X e. V ) | 
						
							| 51 | 32 25 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> Y e. V ) | 
						
							| 52 | 3 7 49 39 50 51 40 | lspindpi |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { Y } ) ) ) | 
						
							| 53 | 52 | simpld |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 42 43 44 45 46 47 53 | hdmap14lem10 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g = G ) | 
						
							| 55 | 32 18 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 56 | 32 21 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> I e. A ) | 
						
							| 57 | 32 23 | syl |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) | 
						
							| 58 | 52 | simprd |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { z } ) =/= ( N ` { Y } ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 55 43 44 56 46 57 58 | hdmap14lem10 |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g = I ) | 
						
							| 60 | 54 59 | eqtr3d |  |-  ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> G = I ) | 
						
							| 61 | 60 | rexlimdv3a |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> ( E. g e. A ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) -> G = I ) ) | 
						
							| 62 | 31 61 | mpd |  |-  ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> G = I ) | 
						
							| 63 | 62 | rexlimdv3a |  |-  ( ph -> ( E. z e. V -. z e. ( N ` { X , Y } ) -> G = I ) ) | 
						
							| 64 | 26 63 | mpd |  |-  ( ph -> G = I ) |