Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem8.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem8.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem8.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem8.q |
|- .+ = ( +g ` U ) |
5 |
|
hdmap14lem8.t |
|- .x. = ( .s ` U ) |
6 |
|
hdmap14lem8.o |
|- .0. = ( 0g ` U ) |
7 |
|
hdmap14lem8.n |
|- N = ( LSpan ` U ) |
8 |
|
hdmap14lem8.r |
|- R = ( Scalar ` U ) |
9 |
|
hdmap14lem8.b |
|- B = ( Base ` R ) |
10 |
|
hdmap14lem8.c |
|- C = ( ( LCDual ` K ) ` W ) |
11 |
|
hdmap14lem8.d |
|- .+b = ( +g ` C ) |
12 |
|
hdmap14lem8.e |
|- .xb = ( .s ` C ) |
13 |
|
hdmap14lem8.p |
|- P = ( Scalar ` C ) |
14 |
|
hdmap14lem8.a |
|- A = ( Base ` P ) |
15 |
|
hdmap14lem8.s |
|- S = ( ( HDMap ` K ) ` W ) |
16 |
|
hdmap14lem8.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap14lem8.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
hdmap14lem8.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
hdmap14lem8.f |
|- ( ph -> F e. B ) |
20 |
|
hdmap14lem8.g |
|- ( ph -> G e. A ) |
21 |
|
hdmap14lem8.i |
|- ( ph -> I e. A ) |
22 |
|
hdmap14lem8.xx |
|- ( ph -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) |
23 |
|
hdmap14lem8.yy |
|- ( ph -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) |
24 |
17
|
eldifad |
|- ( ph -> X e. V ) |
25 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
26 |
1 2 3 7 16 24 25
|
dvh3dim |
|- ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
27 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
28 |
16
|
3ad2ant1 |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> ( K e. HL /\ W e. H ) ) |
29 |
|
simp2 |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> z e. V ) |
30 |
19
|
3ad2ant1 |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> F e. B ) |
31 |
1 2 3 5 8 9 10 12 27 13 14 15 28 29 30
|
hdmap14lem2a |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> E. g e. A ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) |
32 |
|
simp11 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ph ) |
33 |
32 16
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( K e. HL /\ W e. H ) ) |
34 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
35 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
36 |
32 35
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> U e. LMod ) |
37 |
3 34 7 35 24 25
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) |
38 |
32 37
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) |
39 |
|
simp12 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> z e. V ) |
40 |
|
simp13 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> -. z e. ( N ` { X , Y } ) ) |
41 |
6 34 36 38 39 40
|
lssneln0 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> z e. ( V \ { .0. } ) ) |
42 |
32 17
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> X e. ( V \ { .0. } ) ) |
43 |
32 19
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> F e. B ) |
44 |
|
simp2 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g e. A ) |
45 |
32 20
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> G e. A ) |
46 |
|
simp3 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) |
47 |
32 22
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) |
48 |
1 2 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
49 |
32 48
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> U e. LVec ) |
50 |
32 24
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> X e. V ) |
51 |
32 25
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> Y e. V ) |
52 |
3 7 49 39 50 51 40
|
lspindpi |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { Y } ) ) ) |
53 |
52
|
simpld |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 42 43 44 45 46 47 53
|
hdmap14lem10 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g = G ) |
55 |
32 18
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> Y e. ( V \ { .0. } ) ) |
56 |
32 21
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> I e. A ) |
57 |
32 23
|
syl |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( S ` ( F .x. Y ) ) = ( I .xb ( S ` Y ) ) ) |
58 |
52
|
simprd |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> ( N ` { z } ) =/= ( N ` { Y } ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 33 41 55 43 44 56 46 57 58
|
hdmap14lem10 |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> g = I ) |
60 |
54 59
|
eqtr3d |
|- ( ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) /\ g e. A /\ ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) ) -> G = I ) |
61 |
60
|
rexlimdv3a |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> ( E. g e. A ( S ` ( F .x. z ) ) = ( g .xb ( S ` z ) ) -> G = I ) ) |
62 |
31 61
|
mpd |
|- ( ( ph /\ z e. V /\ -. z e. ( N ` { X , Y } ) ) -> G = I ) |
63 |
62
|
rexlimdv3a |
|- ( ph -> ( E. z e. V -. z e. ( N ` { X , Y } ) -> G = I ) ) |
64 |
26 63
|
mpd |
|- ( ph -> G = I ) |