Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem12.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem12.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem12.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem12.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem12.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem12.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem12.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem12.s |
|- S = ( ( HDMap ` K ) ` W ) |
10 |
|
hdmap14lem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
hdmap14lem12.f |
|- ( ph -> F e. B ) |
12 |
|
hdmap14lem12.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem12.a |
|- A = ( Base ` P ) |
14 |
|
hdmap14lem12.o |
|- .0. = ( 0g ` U ) |
15 |
|
hdmap14lem12.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
16 |
|
hdmap14lem12.g |
|- ( ph -> G e. A ) |
17 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
18 |
10
|
3ad2ant1 |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp3 |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. ( V \ { .0. } ) ) |
20 |
19
|
eldifad |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. V ) |
21 |
11
|
3ad2ant1 |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> F e. B ) |
22 |
1 2 3 4 5 6 7 8 17 12 13 9 18 20 21
|
hdmap14lem2a |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) |
23 |
|
simp3 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) |
24 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
25 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
26 |
|
eqid |
|- ( +g ` C ) = ( +g ` C ) |
27 |
|
simp11 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ph ) |
28 |
27 10
|
syl |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( K e. HL /\ W e. H ) ) |
29 |
27 15
|
syl |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> X e. ( V \ { .0. } ) ) |
30 |
|
simp13 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> y e. ( V \ { .0. } ) ) |
31 |
27 11
|
syl |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> F e. B ) |
32 |
27 16
|
syl |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G e. A ) |
33 |
|
simp2 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> g e. A ) |
34 |
|
simp12 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) |
35 |
1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23
|
hdmap14lem11 |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G = g ) |
36 |
35
|
oveq1d |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( G .xb ( S ` y ) ) = ( g .xb ( S ` y ) ) ) |
37 |
23 36
|
eqtr4d |
|- ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) |
38 |
37
|
rexlimdv3a |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
39 |
22 38
|
mpd |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) |
40 |
39
|
3expia |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> ( y e. ( V \ { .0. } ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
41 |
40
|
ralrimiv |
|- ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) |
42 |
|
oveq2 |
|- ( y = X -> ( F .x. y ) = ( F .x. X ) ) |
43 |
42
|
fveq2d |
|- ( y = X -> ( S ` ( F .x. y ) ) = ( S ` ( F .x. X ) ) ) |
44 |
|
fveq2 |
|- ( y = X -> ( S ` y ) = ( S ` X ) ) |
45 |
44
|
oveq2d |
|- ( y = X -> ( G .xb ( S ` y ) ) = ( G .xb ( S ` X ) ) ) |
46 |
43 45
|
eqeq12d |
|- ( y = X -> ( ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) |
47 |
46
|
rspcv |
|- ( X e. ( V \ { .0. } ) -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) |
48 |
15 47
|
syl |
|- ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) |
49 |
48
|
imp |
|- ( ( ph /\ A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) |
50 |
41 49
|
impbida |
|- ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |