Metamath Proof Explorer


Theorem hdmap14lem12

Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h
|- H = ( LHyp ` K )
hdmap14lem12.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem12.v
|- V = ( Base ` U )
hdmap14lem12.t
|- .x. = ( .s ` U )
hdmap14lem12.r
|- R = ( Scalar ` U )
hdmap14lem12.b
|- B = ( Base ` R )
hdmap14lem12.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem12.e
|- .xb = ( .s ` C )
hdmap14lem12.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem12.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem12.f
|- ( ph -> F e. B )
hdmap14lem12.p
|- P = ( Scalar ` C )
hdmap14lem12.a
|- A = ( Base ` P )
hdmap14lem12.o
|- .0. = ( 0g ` U )
hdmap14lem12.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap14lem12.g
|- ( ph -> G e. A )
Assertion hdmap14lem12
|- ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h
 |-  H = ( LHyp ` K )
2 hdmap14lem12.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem12.v
 |-  V = ( Base ` U )
4 hdmap14lem12.t
 |-  .x. = ( .s ` U )
5 hdmap14lem12.r
 |-  R = ( Scalar ` U )
6 hdmap14lem12.b
 |-  B = ( Base ` R )
7 hdmap14lem12.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap14lem12.e
 |-  .xb = ( .s ` C )
9 hdmap14lem12.s
 |-  S = ( ( HDMap ` K ) ` W )
10 hdmap14lem12.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 hdmap14lem12.f
 |-  ( ph -> F e. B )
12 hdmap14lem12.p
 |-  P = ( Scalar ` C )
13 hdmap14lem12.a
 |-  A = ( Base ` P )
14 hdmap14lem12.o
 |-  .0. = ( 0g ` U )
15 hdmap14lem12.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
16 hdmap14lem12.g
 |-  ( ph -> G e. A )
17 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
18 10 3ad2ant1
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) )
19 simp3
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. ( V \ { .0. } ) )
20 19 eldifad
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. V )
21 11 3ad2ant1
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> F e. B )
22 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 hdmap14lem2a
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) )
23 simp3
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) )
24 eqid
 |-  ( +g ` U ) = ( +g ` U )
25 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
26 eqid
 |-  ( +g ` C ) = ( +g ` C )
27 simp11
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ph )
28 27 10 syl
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( K e. HL /\ W e. H ) )
29 27 15 syl
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> X e. ( V \ { .0. } ) )
30 simp13
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> y e. ( V \ { .0. } ) )
31 27 11 syl
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> F e. B )
32 27 16 syl
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G e. A )
33 simp2
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> g e. A )
34 simp12
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) )
35 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 hdmap14lem11
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G = g )
36 35 oveq1d
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( G .xb ( S ` y ) ) = ( g .xb ( S ` y ) ) )
37 23 36 eqtr4d
 |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) )
38 37 rexlimdv3a
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) )
39 22 38 mpd
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) )
40 39 3expia
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> ( y e. ( V \ { .0. } ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) )
41 40 ralrimiv
 |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) )
42 oveq2
 |-  ( y = X -> ( F .x. y ) = ( F .x. X ) )
43 42 fveq2d
 |-  ( y = X -> ( S ` ( F .x. y ) ) = ( S ` ( F .x. X ) ) )
44 fveq2
 |-  ( y = X -> ( S ` y ) = ( S ` X ) )
45 44 oveq2d
 |-  ( y = X -> ( G .xb ( S ` y ) ) = ( G .xb ( S ` X ) ) )
46 43 45 eqeq12d
 |-  ( y = X -> ( ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) )
47 46 rspcv
 |-  ( X e. ( V \ { .0. } ) -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) )
48 15 47 syl
 |-  ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) )
49 48 imp
 |-  ( ( ph /\ A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) )
50 41 49 impbida
 |-  ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) )