| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem12.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem12.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem12.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem12.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmap14lem12.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hdmap14lem12.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hdmap14lem12.e |  |-  .xb = ( .s ` C ) | 
						
							| 9 |  | hdmap14lem12.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem12.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | hdmap14lem12.f |  |-  ( ph -> F e. B ) | 
						
							| 12 |  | hdmap14lem12.p |  |-  P = ( Scalar ` C ) | 
						
							| 13 |  | hdmap14lem12.a |  |-  A = ( Base ` P ) | 
						
							| 14 |  | hdmap14lem12.o |  |-  .0. = ( 0g ` U ) | 
						
							| 15 |  | hdmap14lem12.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 16 |  | hdmap14lem12.g |  |-  ( ph -> G e. A ) | 
						
							| 17 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 18 | 10 | 3ad2ant1 |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 19 |  | simp3 |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. ( V \ { .0. } ) ) | 
						
							| 20 | 19 | eldifad |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> y e. V ) | 
						
							| 21 | 11 | 3ad2ant1 |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> F e. B ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 | hdmap14lem2a |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) | 
						
							| 23 |  | simp3 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) | 
						
							| 24 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 25 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 26 |  | eqid |  |-  ( +g ` C ) = ( +g ` C ) | 
						
							| 27 |  | simp11 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ph ) | 
						
							| 28 | 27 10 | syl |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 29 | 27 15 | syl |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 30 |  | simp13 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> y e. ( V \ { .0. } ) ) | 
						
							| 31 | 27 11 | syl |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> F e. B ) | 
						
							| 32 | 27 16 | syl |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G e. A ) | 
						
							| 33 |  | simp2 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> g e. A ) | 
						
							| 34 |  | simp12 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 35 | 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 | hdmap14lem11 |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> G = g ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( G .xb ( S ` y ) ) = ( g .xb ( S ` y ) ) ) | 
						
							| 37 | 23 36 | eqtr4d |  |-  ( ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) /\ g e. A /\ ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) | 
						
							| 38 | 37 | rexlimdv3a |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( E. g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 39 | 22 38 | mpd |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) /\ y e. ( V \ { .0. } ) ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) | 
						
							| 40 | 39 | 3expia |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> ( y e. ( V \ { .0. } ) -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 41 | 40 | ralrimiv |  |-  ( ( ph /\ ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) -> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) | 
						
							| 42 |  | oveq2 |  |-  ( y = X -> ( F .x. y ) = ( F .x. X ) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( y = X -> ( S ` ( F .x. y ) ) = ( S ` ( F .x. X ) ) ) | 
						
							| 44 |  | fveq2 |  |-  ( y = X -> ( S ` y ) = ( S ` X ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( y = X -> ( G .xb ( S ` y ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 46 | 43 45 | eqeq12d |  |-  ( y = X -> ( ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) | 
						
							| 47 | 46 | rspcv |  |-  ( X e. ( V \ { .0. } ) -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) | 
						
							| 48 | 15 47 | syl |  |-  ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) ) | 
						
							| 49 | 48 | imp |  |-  ( ( ph /\ A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) -> ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) ) | 
						
							| 50 | 41 49 | impbida |  |-  ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |