Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem12.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem12.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem12.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem12.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem12.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem12.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem12.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem12.s |
|- S = ( ( HDMap ` K ) ` W ) |
10 |
|
hdmap14lem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
hdmap14lem12.f |
|- ( ph -> F e. B ) |
12 |
|
hdmap14lem12.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem12.a |
|- A = ( Base ` P ) |
14 |
|
hdmap14lem12.o |
|- .0. = ( 0g ` U ) |
15 |
|
hdmap14lem12.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
16 |
|
hdmap14lem12.g |
|- ( ph -> G e. A ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
hdmap14lem12 |
|- ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
18 |
|
velsn |
|- ( y e. { .0. } <-> y = .0. ) |
19 |
1 7 10
|
lcdlmod |
|- ( ph -> C e. LMod ) |
20 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
21 |
12 8 13 20
|
lmodvs0 |
|- ( ( C e. LMod /\ G e. A ) -> ( G .xb ( 0g ` C ) ) = ( 0g ` C ) ) |
22 |
19 16 21
|
syl2anc |
|- ( ph -> ( G .xb ( 0g ` C ) ) = ( 0g ` C ) ) |
23 |
1 2 14 7 20 9 10
|
hdmapval0 |
|- ( ph -> ( S ` .0. ) = ( 0g ` C ) ) |
24 |
23
|
oveq2d |
|- ( ph -> ( G .xb ( S ` .0. ) ) = ( G .xb ( 0g ` C ) ) ) |
25 |
1 2 10
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
5 4 6 14
|
lmodvs0 |
|- ( ( U e. LMod /\ F e. B ) -> ( F .x. .0. ) = .0. ) |
27 |
25 11 26
|
syl2anc |
|- ( ph -> ( F .x. .0. ) = .0. ) |
28 |
27
|
fveq2d |
|- ( ph -> ( S ` ( F .x. .0. ) ) = ( S ` .0. ) ) |
29 |
28 23
|
eqtrd |
|- ( ph -> ( S ` ( F .x. .0. ) ) = ( 0g ` C ) ) |
30 |
22 24 29
|
3eqtr4rd |
|- ( ph -> ( S ` ( F .x. .0. ) ) = ( G .xb ( S ` .0. ) ) ) |
31 |
|
oveq2 |
|- ( y = .0. -> ( F .x. y ) = ( F .x. .0. ) ) |
32 |
31
|
fveq2d |
|- ( y = .0. -> ( S ` ( F .x. y ) ) = ( S ` ( F .x. .0. ) ) ) |
33 |
|
fveq2 |
|- ( y = .0. -> ( S ` y ) = ( S ` .0. ) ) |
34 |
33
|
oveq2d |
|- ( y = .0. -> ( G .xb ( S ` y ) ) = ( G .xb ( S ` .0. ) ) ) |
35 |
32 34
|
eqeq12d |
|- ( y = .0. -> ( ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( S ` ( F .x. .0. ) ) = ( G .xb ( S ` .0. ) ) ) ) |
36 |
30 35
|
syl5ibrcom |
|- ( ph -> ( y = .0. -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
37 |
18 36
|
syl5bi |
|- ( ph -> ( y e. { .0. } -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
38 |
37
|
ralrimiv |
|- ( ph -> A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) |
39 |
38
|
biantrud |
|- ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) /\ A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) ) |
40 |
|
ralunb |
|- ( A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) /\ A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
41 |
39 40
|
bitr4di |
|- ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
42 |
3 14
|
lmod0vcl |
|- ( U e. LMod -> .0. e. V ) |
43 |
|
difsnid |
|- ( .0. e. V -> ( ( V \ { .0. } ) u. { .0. } ) = V ) |
44 |
25 42 43
|
3syl |
|- ( ph -> ( ( V \ { .0. } ) u. { .0. } ) = V ) |
45 |
44
|
raleqdv |
|- ( ph -> ( A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> A. y e. V ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |
46 |
17 41 45
|
3bitrd |
|- ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. V ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |