| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem12.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem12.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem12.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem12.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmap14lem12.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hdmap14lem12.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hdmap14lem12.e |  |-  .xb = ( .s ` C ) | 
						
							| 9 |  | hdmap14lem12.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem12.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | hdmap14lem12.f |  |-  ( ph -> F e. B ) | 
						
							| 12 |  | hdmap14lem12.p |  |-  P = ( Scalar ` C ) | 
						
							| 13 |  | hdmap14lem12.a |  |-  A = ( Base ` P ) | 
						
							| 14 |  | hdmap14lem12.o |  |-  .0. = ( 0g ` U ) | 
						
							| 15 |  | hdmap14lem12.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 16 |  | hdmap14lem12.g |  |-  ( ph -> G e. A ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | hdmap14lem12 |  |-  ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 18 |  | velsn |  |-  ( y e. { .0. } <-> y = .0. ) | 
						
							| 19 | 1 7 10 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 21 | 12 8 13 20 | lmodvs0 |  |-  ( ( C e. LMod /\ G e. A ) -> ( G .xb ( 0g ` C ) ) = ( 0g ` C ) ) | 
						
							| 22 | 19 16 21 | syl2anc |  |-  ( ph -> ( G .xb ( 0g ` C ) ) = ( 0g ` C ) ) | 
						
							| 23 | 1 2 14 7 20 9 10 | hdmapval0 |  |-  ( ph -> ( S ` .0. ) = ( 0g ` C ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ph -> ( G .xb ( S ` .0. ) ) = ( G .xb ( 0g ` C ) ) ) | 
						
							| 25 | 1 2 10 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 26 | 5 4 6 14 | lmodvs0 |  |-  ( ( U e. LMod /\ F e. B ) -> ( F .x. .0. ) = .0. ) | 
						
							| 27 | 25 11 26 | syl2anc |  |-  ( ph -> ( F .x. .0. ) = .0. ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ph -> ( S ` ( F .x. .0. ) ) = ( S ` .0. ) ) | 
						
							| 29 | 28 23 | eqtrd |  |-  ( ph -> ( S ` ( F .x. .0. ) ) = ( 0g ` C ) ) | 
						
							| 30 | 22 24 29 | 3eqtr4rd |  |-  ( ph -> ( S ` ( F .x. .0. ) ) = ( G .xb ( S ` .0. ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( y = .0. -> ( F .x. y ) = ( F .x. .0. ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( y = .0. -> ( S ` ( F .x. y ) ) = ( S ` ( F .x. .0. ) ) ) | 
						
							| 33 |  | fveq2 |  |-  ( y = .0. -> ( S ` y ) = ( S ` .0. ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( y = .0. -> ( G .xb ( S ` y ) ) = ( G .xb ( S ` .0. ) ) ) | 
						
							| 35 | 32 34 | eqeq12d |  |-  ( y = .0. -> ( ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( S ` ( F .x. .0. ) ) = ( G .xb ( S ` .0. ) ) ) ) | 
						
							| 36 | 30 35 | syl5ibrcom |  |-  ( ph -> ( y = .0. -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 37 | 18 36 | biimtrid |  |-  ( ph -> ( y e. { .0. } -> ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 38 | 37 | ralrimiv |  |-  ( ph -> A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) | 
						
							| 39 | 38 | biantrud |  |-  ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) /\ A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) ) | 
						
							| 40 |  | ralunb |  |-  ( A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) /\ A. y e. { .0. } ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 41 | 39 40 | bitr4di |  |-  ( ph -> ( A. y e. ( V \ { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 42 | 3 14 | lmod0vcl |  |-  ( U e. LMod -> .0. e. V ) | 
						
							| 43 |  | difsnid |  |-  ( .0. e. V -> ( ( V \ { .0. } ) u. { .0. } ) = V ) | 
						
							| 44 | 25 42 43 | 3syl |  |-  ( ph -> ( ( V \ { .0. } ) u. { .0. } ) = V ) | 
						
							| 45 | 44 | raleqdv |  |-  ( ph -> ( A. y e. ( ( V \ { .0. } ) u. { .0. } ) ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) <-> A. y e. V ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) | 
						
							| 46 | 17 41 45 | 3bitrd |  |-  ( ph -> ( ( S ` ( F .x. X ) ) = ( G .xb ( S ` X ) ) <-> A. y e. V ( S ` ( F .x. y ) ) = ( G .xb ( S ` y ) ) ) ) |