Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem12.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem12.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem12.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem12.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem12.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem12.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem12.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem12.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap14lem12.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
hdmap14lem12.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
12 |
|
hdmap14lem12.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
13 |
|
hdmap14lem12.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
14 |
|
hdmap14lem12.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
15 |
|
hdmap14lem12.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
hdmap14lem12.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
hdmap14lem12 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
18 |
|
velsn |
⊢ ( 𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) |
19 |
1 7 10
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
21 |
12 8 13 20
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐴 ) → ( 𝐺 ∙ ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
22 |
19 16 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∙ ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
23 |
1 2 14 7 20 9 10
|
hdmapval0 |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( 0g ‘ 𝐶 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 ∙ ( 𝑆 ‘ 0 ) ) = ( 𝐺 ∙ ( 0g ‘ 𝐶 ) ) ) |
25 |
1 2 10
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
26 |
5 4 6 14
|
lmodvs0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 · 0 ) = 0 ) |
27 |
25 11 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 · 0 ) = 0 ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 0 ) ) = ( 𝑆 ‘ 0 ) ) |
29 |
28 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 0 ) ) = ( 0g ‘ 𝐶 ) ) |
30 |
22 24 29
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 0 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 0 ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝐹 · 𝑦 ) = ( 𝐹 · 0 ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝑦 = 0 → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑆 ‘ ( 𝐹 · 0 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 0 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ 0 ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑦 = 0 → ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 0 ) ) ) |
35 |
32 34
|
eqeq12d |
⊢ ( 𝑦 = 0 → ( ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 0 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 0 ) ) ) ) |
36 |
30 35
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑦 = 0 → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
37 |
18 36
|
syl5bi |
⊢ ( 𝜑 → ( 𝑦 ∈ { 0 } → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
38 |
37
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ { 0 } ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
39 |
38
|
biantrud |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ { 0 } ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) ) |
40 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( ( 𝑉 ∖ { 0 } ) ∪ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ { 0 } ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
41 |
39 40
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( ( 𝑉 ∖ { 0 } ) ∪ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
42 |
3 14
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → 0 ∈ 𝑉 ) |
43 |
|
difsnid |
⊢ ( 0 ∈ 𝑉 → ( ( 𝑉 ∖ { 0 } ) ∪ { 0 } ) = 𝑉 ) |
44 |
25 42 43
|
3syl |
⊢ ( 𝜑 → ( ( 𝑉 ∖ { 0 } ) ∪ { 0 } ) = 𝑉 ) |
45 |
44
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( ( 𝑉 ∖ { 0 } ) ∪ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
46 |
17 41 45
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |