| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem12.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem12.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem12.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem12.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem12.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmap14lem12.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap14lem12.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hdmap14lem12.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem12.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmap14lem12.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 12 |  | hdmap14lem12.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem12.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem12.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 15 |  | hdmap14lem12.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 16 |  | hdmap14lem12.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | hdmap14lem12 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 18 |  | velsn | ⊢ ( 𝑦  ∈  {  0  }  ↔  𝑦  =   0  ) | 
						
							| 19 | 1 7 10 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 21 | 12 8 13 20 | lmodvs0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐺  ∈  𝐴 )  →  ( 𝐺  ∙  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 22 | 19 16 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∙  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 23 | 1 2 14 7 20 9 10 | hdmapval0 | ⊢ ( 𝜑  →  ( 𝑆 ‘  0  )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ∙  ( 𝑆 ‘  0  ) )  =  ( 𝐺  ∙  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 25 | 1 2 10 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 26 | 5 4 6 14 | lmodvs0 | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐹  ∈  𝐵 )  →  ( 𝐹  ·   0  )  =   0  ) | 
						
							| 27 | 25 11 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ·   0  )  =   0  ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·   0  ) )  =  ( 𝑆 ‘  0  ) ) | 
						
							| 29 | 28 23 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·   0  ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 30 | 22 24 29 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·   0  ) )  =  ( 𝐺  ∙  ( 𝑆 ‘  0  ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑦  =   0   →  ( 𝐹  ·  𝑦 )  =  ( 𝐹  ·   0  ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝑦  =   0   →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑆 ‘ ( 𝐹  ·   0  ) ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑦  =   0   →  ( 𝑆 ‘ 𝑦 )  =  ( 𝑆 ‘  0  ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝑦  =   0   →  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘  0  ) ) ) | 
						
							| 35 | 32 34 | eqeq12d | ⊢ ( 𝑦  =   0   →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ ( 𝐹  ·   0  ) )  =  ( 𝐺  ∙  ( 𝑆 ‘  0  ) ) ) ) | 
						
							| 36 | 30 35 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑦  =   0   →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 37 | 18 36 | biimtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  {  0  }  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 38 | 37 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  {  0  } ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 39 | 38 | biantrud | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  {  0  } ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) ) | 
						
							| 40 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( ( 𝑉  ∖  {  0  } )  ∪  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ∧  ∀ 𝑦  ∈  {  0  } ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 39 40 | bitr4di | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( ( 𝑉  ∖  {  0  } )  ∪  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 3 14 | lmod0vcl | ⊢ ( 𝑈  ∈  LMod  →   0   ∈  𝑉 ) | 
						
							| 43 |  | difsnid | ⊢ (  0   ∈  𝑉  →  ( ( 𝑉  ∖  {  0  } )  ∪  {  0  } )  =  𝑉 ) | 
						
							| 44 | 25 42 43 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑉  ∖  {  0  } )  ∪  {  0  } )  =  𝑉 ) | 
						
							| 45 | 44 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( ( 𝑉  ∖  {  0  } )  ∪  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 46 | 17 41 45 | 3bitrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∀ 𝑦  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) |