Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem12.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem12.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem12.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem12.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem12.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem12.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem12.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem12.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap14lem12.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
hdmap14lem12.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
12 |
|
hdmap14lem12.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
13 |
|
hdmap14lem12.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
1 2 3 14 10
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑉 𝑦 ≠ ( 0g ‘ 𝑈 ) ) |
16 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
3simpc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ) |
18 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → 𝑦 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
20 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → 𝐹 ∈ 𝐵 ) |
21 |
1 2 3 4 14 5 6 7 8 12 13 9 16 19 20
|
hdmap14lem7 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
22 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝜑 ) |
23 |
22 10
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
22 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝐹 ∈ 𝐵 ) |
25 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝑦 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ 𝐴 ) |
27 |
1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26
|
hdmap14lem13 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑔 ∈ 𝐴 ) → ( ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
28 |
27
|
reubidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → ( ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ∃! 𝑔 ∈ 𝐴 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
29 |
21 28
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑈 ) ) → ∃! 𝑔 ∈ 𝐴 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) |
30 |
29
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑉 𝑦 ≠ ( 0g ‘ 𝑈 ) → ∃! 𝑔 ∈ 𝐴 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
31 |
15 30
|
mpd |
⊢ ( 𝜑 → ∃! 𝑔 ∈ 𝐴 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) |