| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem12.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem12.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem12.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem12.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem12.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmap14lem12.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap14lem12.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hdmap14lem12.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem12.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmap14lem12.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 12 |  | hdmap14lem12.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem12.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 15 | 1 2 3 14 10 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑉 𝑦  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 16 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | 3simpc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 18 |  | eldifsn | ⊢ ( 𝑦  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } )  ↔  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  𝑦  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 20 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 21 | 1 2 3 4 14 5 6 7 8 12 13 9 16 19 20 | hdmap14lem7 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 22 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  𝜑 ) | 
						
							| 23 | 22 10 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 24 | 22 11 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  𝐹  ∈  𝐵 ) | 
						
							| 25 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  𝑦  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  𝐴 ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26 | hdmap14lem13 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑔  ∈  𝐴 )  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 27 | reubidva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  ( ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ∃! 𝑔  ∈  𝐴 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 21 28 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑈 ) )  →  ∃! 𝑔  ∈  𝐴 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 30 | 29 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝑉 𝑦  ≠  ( 0g ‘ 𝑈 )  →  ∃! 𝑔  ∈  𝐴 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 15 30 | mpd | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐴 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) |