Metamath Proof Explorer


Theorem hdmap14lem14

Description: Part of proof of part 14 in Baer p. 50 line 3. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem12.t · = ( ·𝑠𝑈 )
hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.e = ( ·𝑠𝐶 )
hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem12.f ( 𝜑𝐹𝐵 )
hdmap14lem12.p 𝑃 = ( Scalar ‘ 𝐶 )
hdmap14lem12.a 𝐴 = ( Base ‘ 𝑃 )
Assertion hdmap14lem14 ( 𝜑 → ∃! 𝑔𝐴𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem12.t · = ( ·𝑠𝑈 )
5 hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
7 hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap14lem12.e = ( ·𝑠𝐶 )
9 hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 hdmap14lem12.f ( 𝜑𝐹𝐵 )
12 hdmap14lem12.p 𝑃 = ( Scalar ‘ 𝐶 )
13 hdmap14lem12.a 𝐴 = ( Base ‘ 𝑃 )
14 eqid ( 0g𝑈 ) = ( 0g𝑈 )
15 1 2 3 14 10 dvh1dim ( 𝜑 → ∃ 𝑦𝑉 𝑦 ≠ ( 0g𝑈 ) )
16 10 3ad2ant1 ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 3simpc ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → ( 𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) )
18 eldifsn ( 𝑦 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) )
19 17 18 sylibr ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → 𝑦 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
20 11 3ad2ant1 ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → 𝐹𝐵 )
21 1 2 3 4 14 5 6 7 8 12 13 9 16 19 20 hdmap14lem7 ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) )
22 simpl1 ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → 𝜑 )
23 22 10 syl ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 22 11 syl ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → 𝐹𝐵 )
25 19 adantr ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → 𝑦 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
26 simpr ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → 𝑔𝐴 )
27 1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26 hdmap14lem13 ( ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) ∧ 𝑔𝐴 ) → ( ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ↔ ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
28 27 reubidva ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → ( ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ↔ ∃! 𝑔𝐴𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
29 21 28 mpbid ( ( 𝜑𝑦𝑉𝑦 ≠ ( 0g𝑈 ) ) → ∃! 𝑔𝐴𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )
30 29 rexlimdv3a ( 𝜑 → ( ∃ 𝑦𝑉 𝑦 ≠ ( 0g𝑈 ) → ∃! 𝑔𝐴𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
31 15 30 mpd ( 𝜑 → ∃! 𝑔𝐴𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )