| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem7.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem7.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem7.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem7.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem7.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem7.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmap14lem7.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmap14lem7.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 10 |  | hdmap14lem7.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hdmap14lem7.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hdmap14lem7.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | hdmap14lem7.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | hdmap14lem7.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | hdmap14lem7.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 19 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ( 0g ‘ 𝑅 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 20 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ( 0g ‘ 𝑅 ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  =  ( 0g ‘ 𝑅 ) )  →  𝐹  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 19 20 21 | hdmap14lem6 | ⊢ ( ( 𝜑  ∧  𝐹  =  ( 0g ‘ 𝑅 ) )  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 23 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 24 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 25 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  𝐹  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 27 |  | eldifsn | ⊢ ( 𝐹  ∈  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } )  ↔  ( 𝐹  ∈  𝐵  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 28 | 25 26 27 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  𝐹  ∈  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 23 24 28 | hdmap14lem4 | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ( 0g ‘ 𝑅 ) )  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 30 | 22 29 | pm2.61dane | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) |