Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem7.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem7.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem7.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem7.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap14lem7.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmap14lem7.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmap14lem7.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap14lem7.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
10 |
|
hdmap14lem7.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
11 |
|
hdmap14lem7.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
12 |
|
hdmap14lem7.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap14lem7.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
hdmap14lem7.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
hdmap14lem7.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
19 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑅 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑅 ) ) → 𝐹 = ( 0g ‘ 𝑅 ) ) |
22 |
1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 19 20 21
|
hdmap14lem6 |
⊢ ( ( 𝜑 ∧ 𝐹 = ( 0g ‘ 𝑅 ) ) → ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
23 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ≠ ( 0g ‘ 𝑅 ) ) |
27 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ↔ ( 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) ) |
28 |
25 26 27
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
29 |
1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 23 24 28
|
hdmap14lem4 |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
30 |
22 29
|
pm2.61dane |
⊢ ( 𝜑 → ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |