| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem7.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem7.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem7.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem7.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem7.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap14lem7.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmap14lem7.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmap14lem7.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hdmap14lem7.e |  |-  .xb = ( .s ` C ) | 
						
							| 10 |  | hdmap14lem7.p |  |-  P = ( Scalar ` C ) | 
						
							| 11 |  | hdmap14lem7.a |  |-  A = ( Base ` P ) | 
						
							| 12 |  | hdmap14lem7.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 13 |  | hdmap14lem7.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 14 |  | hdmap14lem7.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 15 |  | hdmap14lem7.f |  |-  ( ph -> F e. B ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 17 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 18 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 19 | 13 | adantr |  |-  ( ( ph /\ F = ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 20 | 14 | adantr |  |-  ( ( ph /\ F = ( 0g ` R ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ F = ( 0g ` R ) ) -> F = ( 0g ` R ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 19 20 21 | hdmap14lem6 |  |-  ( ( ph /\ F = ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) | 
						
							| 23 | 13 | adantr |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 24 | 14 | adantr |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 25 | 15 | adantr |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. B ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F =/= ( 0g ` R ) ) | 
						
							| 27 |  | eldifsn |  |-  ( F e. ( B \ { ( 0g ` R ) } ) <-> ( F e. B /\ F =/= ( 0g ` R ) ) ) | 
						
							| 28 | 25 26 27 | sylanbrc |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. ( B \ { ( 0g ` R ) } ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 23 24 28 | hdmap14lem4 |  |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) | 
						
							| 30 | 22 29 | pm2.61dane |  |-  ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |