Metamath Proof Explorer


Theorem hdmap14lem7

Description: Combine cases of F . TODO: Can this be done at once in hdmap14lem3 , in order to get rid of hdmap14lem6 ? Perhaps modify lspsneu to become E! k e. K instead of E! k e. ( K \ { .0. } ) ? (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem7.h
|- H = ( LHyp ` K )
hdmap14lem7.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem7.v
|- V = ( Base ` U )
hdmap14lem7.t
|- .x. = ( .s ` U )
hdmap14lem7.o
|- .0. = ( 0g ` U )
hdmap14lem7.r
|- R = ( Scalar ` U )
hdmap14lem7.b
|- B = ( Base ` R )
hdmap14lem7.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem7.e
|- .xb = ( .s ` C )
hdmap14lem7.p
|- P = ( Scalar ` C )
hdmap14lem7.a
|- A = ( Base ` P )
hdmap14lem7.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem7.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem7.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap14lem7.f
|- ( ph -> F e. B )
Assertion hdmap14lem7
|- ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem7.h
 |-  H = ( LHyp ` K )
2 hdmap14lem7.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem7.v
 |-  V = ( Base ` U )
4 hdmap14lem7.t
 |-  .x. = ( .s ` U )
5 hdmap14lem7.o
 |-  .0. = ( 0g ` U )
6 hdmap14lem7.r
 |-  R = ( Scalar ` U )
7 hdmap14lem7.b
 |-  B = ( Base ` R )
8 hdmap14lem7.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hdmap14lem7.e
 |-  .xb = ( .s ` C )
10 hdmap14lem7.p
 |-  P = ( Scalar ` C )
11 hdmap14lem7.a
 |-  A = ( Base ` P )
12 hdmap14lem7.s
 |-  S = ( ( HDMap ` K ) ` W )
13 hdmap14lem7.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 hdmap14lem7.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
15 hdmap14lem7.f
 |-  ( ph -> F e. B )
16 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
17 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
18 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
19 13 adantr
 |-  ( ( ph /\ F = ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) )
20 14 adantr
 |-  ( ( ph /\ F = ( 0g ` R ) ) -> X e. ( V \ { .0. } ) )
21 simpr
 |-  ( ( ph /\ F = ( 0g ` R ) ) -> F = ( 0g ` R ) )
22 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 19 20 21 hdmap14lem6
 |-  ( ( ph /\ F = ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )
23 13 adantr
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) )
24 14 adantr
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> X e. ( V \ { .0. } ) )
25 15 adantr
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. B )
26 simpr
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F =/= ( 0g ` R ) )
27 eldifsn
 |-  ( F e. ( B \ { ( 0g ` R ) } ) <-> ( F e. B /\ F =/= ( 0g ` R ) ) )
28 25 26 27 sylanbrc
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. ( B \ { ( 0g ` R ) } ) )
29 1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 23 24 28 hdmap14lem4
 |-  ( ( ph /\ F =/= ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )
30 22 29 pm2.61dane
 |-  ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )