Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem7.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem7.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem7.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem7.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem7.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap14lem7.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmap14lem7.b |
|- B = ( Base ` R ) |
8 |
|
hdmap14lem7.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hdmap14lem7.e |
|- .xb = ( .s ` C ) |
10 |
|
hdmap14lem7.p |
|- P = ( Scalar ` C ) |
11 |
|
hdmap14lem7.a |
|- A = ( Base ` P ) |
12 |
|
hdmap14lem7.s |
|- S = ( ( HDMap ` K ) ` W ) |
13 |
|
hdmap14lem7.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
hdmap14lem7.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
15 |
|
hdmap14lem7.f |
|- ( ph -> F e. B ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
18 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
19 |
13
|
adantr |
|- ( ( ph /\ F = ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) |
20 |
14
|
adantr |
|- ( ( ph /\ F = ( 0g ` R ) ) -> X e. ( V \ { .0. } ) ) |
21 |
|
simpr |
|- ( ( ph /\ F = ( 0g ` R ) ) -> F = ( 0g ` R ) ) |
22 |
1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 19 20 21
|
hdmap14lem6 |
|- ( ( ph /\ F = ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
23 |
13
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
14
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> X e. ( V \ { .0. } ) ) |
25 |
15
|
adantr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. B ) |
26 |
|
simpr |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> F =/= ( 0g ` R ) ) |
27 |
|
eldifsn |
|- ( F e. ( B \ { ( 0g ` R ) } ) <-> ( F e. B /\ F =/= ( 0g ` R ) ) ) |
28 |
25 26 27
|
sylanbrc |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> F e. ( B \ { ( 0g ` R ) } ) ) |
29 |
1 2 3 4 5 6 7 16 8 9 17 10 11 18 12 23 24 28
|
hdmap14lem4 |
|- ( ( ph /\ F =/= ( 0g ` R ) ) -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
30 |
22 29
|
pm2.61dane |
|- ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |