| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem3.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap14lem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmap14lem1.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmap14lem1.z |  |-  Z = ( 0g ` R ) | 
						
							| 9 |  | hdmap14lem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem2.e |  |-  .xb = ( .s ` C ) | 
						
							| 11 |  | hdmap14lem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 12 |  | hdmap14lem2.p |  |-  P = ( Scalar ` C ) | 
						
							| 13 |  | hdmap14lem2.a |  |-  A = ( Base ` P ) | 
						
							| 14 |  | hdmap14lem2.q |  |-  Q = ( 0g ` P ) | 
						
							| 15 |  | hdmap14lem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem3.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem6.f |  |-  ( ph -> F = Z ) | 
						
							| 19 | 1 9 16 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 20 | 12 13 14 | lmod0cl |  |-  ( C e. LMod -> Q e. A ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> Q e. A ) | 
						
							| 22 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 23 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 24 | 1 2 3 9 22 15 16 23 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` C ) ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 26 | 22 12 10 14 25 | lmod0vs |  |-  ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 27 | 19 24 26 | syl2anc |  |-  ( ph -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ph -> ( 0g ` C ) = ( Q .xb ( S ` X ) ) ) | 
						
							| 29 |  | oveq1 |  |-  ( g = Q -> ( g .xb ( S ` X ) ) = ( Q .xb ( S ` X ) ) ) | 
						
							| 30 | 29 | rspceeqv |  |-  ( ( Q e. A /\ ( 0g ` C ) = ( Q .xb ( S ` X ) ) ) -> E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) | 
						
							| 31 | 21 28 30 | syl2anc |  |-  ( ph -> E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) | 
						
							| 32 | 1 2 3 5 9 25 22 15 16 17 | hdmapnzcl |  |-  ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) | 
						
							| 33 |  | eldifsni |  |-  ( ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) -> ( S ` X ) =/= ( 0g ` C ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( S ` X ) =/= ( 0g ` C ) ) | 
						
							| 35 | 34 | neneqd |  |-  ( ph -> -. ( S ` X ) = ( 0g ` C ) ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> -. ( S ` X ) = ( 0g ` C ) ) | 
						
							| 37 |  | simp3l |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( 0g ` C ) = ( g .xb ( S ` X ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( g .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 39 | 1 9 16 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> C e. LVec ) | 
						
							| 41 |  | simp2l |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g e. A ) | 
						
							| 42 | 24 | 3ad2ant1 |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( S ` X ) e. ( Base ` C ) ) | 
						
							| 43 | 22 10 12 13 14 25 40 41 42 | lvecvs0or |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( g .xb ( S ` X ) ) = ( 0g ` C ) <-> ( g = Q \/ ( S ` X ) = ( 0g ` C ) ) ) ) | 
						
							| 44 | 38 43 | mpbid |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( g = Q \/ ( S ` X ) = ( 0g ` C ) ) ) | 
						
							| 45 | 44 | orcomd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( S ` X ) = ( 0g ` C ) \/ g = Q ) ) | 
						
							| 46 | 45 | ord |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( -. ( S ` X ) = ( 0g ` C ) -> g = Q ) ) | 
						
							| 47 | 36 46 | mpd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g = Q ) | 
						
							| 48 |  | simp3r |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( 0g ` C ) = ( h .xb ( S ` X ) ) ) | 
						
							| 49 | 48 | eqcomd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( h .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 50 |  | simp2r |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> h e. A ) | 
						
							| 51 | 22 10 12 13 14 25 40 50 42 | lvecvs0or |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( h .xb ( S ` X ) ) = ( 0g ` C ) <-> ( h = Q \/ ( S ` X ) = ( 0g ` C ) ) ) ) | 
						
							| 52 | 49 51 | mpbid |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( h = Q \/ ( S ` X ) = ( 0g ` C ) ) ) | 
						
							| 53 | 52 | orcomd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( S ` X ) = ( 0g ` C ) \/ h = Q ) ) | 
						
							| 54 | 53 | ord |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( -. ( S ` X ) = ( 0g ` C ) -> h = Q ) ) | 
						
							| 55 | 36 54 | mpd |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> h = Q ) | 
						
							| 56 | 47 55 | eqtr4d |  |-  ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g = h ) | 
						
							| 57 | 56 | 3exp |  |-  ( ph -> ( ( g e. A /\ h e. A ) -> ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) ) | 
						
							| 58 | 57 | ralrimivv |  |-  ( ph -> A. g e. A A. h e. A ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) | 
						
							| 59 |  | oveq1 |  |-  ( g = h -> ( g .xb ( S ` X ) ) = ( h .xb ( S ` X ) ) ) | 
						
							| 60 | 59 | eqeq2d |  |-  ( g = h -> ( ( 0g ` C ) = ( g .xb ( S ` X ) ) <-> ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) | 
						
							| 61 | 60 | reu4 |  |-  ( E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) <-> ( E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ A. g e. A A. h e. A ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) ) | 
						
							| 62 | 31 58 61 | sylanbrc |  |-  ( ph -> E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) | 
						
							| 63 | 18 | oveq1d |  |-  ( ph -> ( F .x. X ) = ( Z .x. X ) ) | 
						
							| 64 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 65 | 3 6 4 8 5 | lmod0vs |  |-  ( ( U e. LMod /\ X e. V ) -> ( Z .x. X ) = .0. ) | 
						
							| 66 | 64 23 65 | syl2anc |  |-  ( ph -> ( Z .x. X ) = .0. ) | 
						
							| 67 | 63 66 | eqtrd |  |-  ( ph -> ( F .x. X ) = .0. ) | 
						
							| 68 | 67 | fveq2d |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( S ` .0. ) ) | 
						
							| 69 | 1 2 5 9 25 15 16 | hdmapval0 |  |-  ( ph -> ( S ` .0. ) = ( 0g ` C ) ) | 
						
							| 70 | 68 69 | eqtrd |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( 0g ` C ) ) | 
						
							| 71 | 70 | eqeq1d |  |-  ( ph -> ( ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> ( 0g ` C ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 72 | 71 | reubidv |  |-  ( ph -> ( E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 73 | 62 72 | mpbird |  |-  ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |