Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem1.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem3.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap14lem1.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmap14lem1.b |
|- B = ( Base ` R ) |
8 |
|
hdmap14lem1.z |
|- Z = ( 0g ` R ) |
9 |
|
hdmap14lem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
10 |
|
hdmap14lem2.e |
|- .xb = ( .s ` C ) |
11 |
|
hdmap14lem1.l |
|- L = ( LSpan ` C ) |
12 |
|
hdmap14lem2.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem2.a |
|- A = ( Base ` P ) |
14 |
|
hdmap14lem2.q |
|- Q = ( 0g ` P ) |
15 |
|
hdmap14lem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
16 |
|
hdmap14lem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap14lem3.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
hdmap14lem6.f |
|- ( ph -> F = Z ) |
19 |
1 9 16
|
lcdlmod |
|- ( ph -> C e. LMod ) |
20 |
12 13 14
|
lmod0cl |
|- ( C e. LMod -> Q e. A ) |
21 |
19 20
|
syl |
|- ( ph -> Q e. A ) |
22 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
23 |
17
|
eldifad |
|- ( ph -> X e. V ) |
24 |
1 2 3 9 22 15 16 23
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` C ) ) |
25 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
26 |
22 12 10 14 25
|
lmod0vs |
|- ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) |
27 |
19 24 26
|
syl2anc |
|- ( ph -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) |
28 |
27
|
eqcomd |
|- ( ph -> ( 0g ` C ) = ( Q .xb ( S ` X ) ) ) |
29 |
|
oveq1 |
|- ( g = Q -> ( g .xb ( S ` X ) ) = ( Q .xb ( S ` X ) ) ) |
30 |
29
|
rspceeqv |
|- ( ( Q e. A /\ ( 0g ` C ) = ( Q .xb ( S ` X ) ) ) -> E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) |
31 |
21 28 30
|
syl2anc |
|- ( ph -> E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) |
32 |
1 2 3 5 9 25 22 15 16 17
|
hdmapnzcl |
|- ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) |
33 |
|
eldifsni |
|- ( ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) -> ( S ` X ) =/= ( 0g ` C ) ) |
34 |
32 33
|
syl |
|- ( ph -> ( S ` X ) =/= ( 0g ` C ) ) |
35 |
34
|
neneqd |
|- ( ph -> -. ( S ` X ) = ( 0g ` C ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> -. ( S ` X ) = ( 0g ` C ) ) |
37 |
|
simp3l |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( 0g ` C ) = ( g .xb ( S ` X ) ) ) |
38 |
37
|
eqcomd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( g .xb ( S ` X ) ) = ( 0g ` C ) ) |
39 |
1 9 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
40 |
39
|
3ad2ant1 |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> C e. LVec ) |
41 |
|
simp2l |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g e. A ) |
42 |
24
|
3ad2ant1 |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( S ` X ) e. ( Base ` C ) ) |
43 |
22 10 12 13 14 25 40 41 42
|
lvecvs0or |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( g .xb ( S ` X ) ) = ( 0g ` C ) <-> ( g = Q \/ ( S ` X ) = ( 0g ` C ) ) ) ) |
44 |
38 43
|
mpbid |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( g = Q \/ ( S ` X ) = ( 0g ` C ) ) ) |
45 |
44
|
orcomd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( S ` X ) = ( 0g ` C ) \/ g = Q ) ) |
46 |
45
|
ord |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( -. ( S ` X ) = ( 0g ` C ) -> g = Q ) ) |
47 |
36 46
|
mpd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g = Q ) |
48 |
|
simp3r |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( 0g ` C ) = ( h .xb ( S ` X ) ) ) |
49 |
48
|
eqcomd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( h .xb ( S ` X ) ) = ( 0g ` C ) ) |
50 |
|
simp2r |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> h e. A ) |
51 |
22 10 12 13 14 25 40 50 42
|
lvecvs0or |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( h .xb ( S ` X ) ) = ( 0g ` C ) <-> ( h = Q \/ ( S ` X ) = ( 0g ` C ) ) ) ) |
52 |
49 51
|
mpbid |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( h = Q \/ ( S ` X ) = ( 0g ` C ) ) ) |
53 |
52
|
orcomd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( ( S ` X ) = ( 0g ` C ) \/ h = Q ) ) |
54 |
53
|
ord |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> ( -. ( S ` X ) = ( 0g ` C ) -> h = Q ) ) |
55 |
36 54
|
mpd |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> h = Q ) |
56 |
47 55
|
eqtr4d |
|- ( ( ph /\ ( g e. A /\ h e. A ) /\ ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) -> g = h ) |
57 |
56
|
3exp |
|- ( ph -> ( ( g e. A /\ h e. A ) -> ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) ) |
58 |
57
|
ralrimivv |
|- ( ph -> A. g e. A A. h e. A ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) |
59 |
|
oveq1 |
|- ( g = h -> ( g .xb ( S ` X ) ) = ( h .xb ( S ` X ) ) ) |
60 |
59
|
eqeq2d |
|- ( g = h -> ( ( 0g ` C ) = ( g .xb ( S ` X ) ) <-> ( 0g ` C ) = ( h .xb ( S ` X ) ) ) ) |
61 |
60
|
reu4 |
|- ( E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) <-> ( E. g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ A. g e. A A. h e. A ( ( ( 0g ` C ) = ( g .xb ( S ` X ) ) /\ ( 0g ` C ) = ( h .xb ( S ` X ) ) ) -> g = h ) ) ) |
62 |
31 58 61
|
sylanbrc |
|- ( ph -> E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) |
63 |
18
|
oveq1d |
|- ( ph -> ( F .x. X ) = ( Z .x. X ) ) |
64 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
65 |
3 6 4 8 5
|
lmod0vs |
|- ( ( U e. LMod /\ X e. V ) -> ( Z .x. X ) = .0. ) |
66 |
64 23 65
|
syl2anc |
|- ( ph -> ( Z .x. X ) = .0. ) |
67 |
63 66
|
eqtrd |
|- ( ph -> ( F .x. X ) = .0. ) |
68 |
67
|
fveq2d |
|- ( ph -> ( S ` ( F .x. X ) ) = ( S ` .0. ) ) |
69 |
1 2 5 9 25 15 16
|
hdmapval0 |
|- ( ph -> ( S ` .0. ) = ( 0g ` C ) ) |
70 |
68 69
|
eqtrd |
|- ( ph -> ( S ` ( F .x. X ) ) = ( 0g ` C ) ) |
71 |
70
|
eqeq1d |
|- ( ph -> ( ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> ( 0g ` C ) = ( g .xb ( S ` X ) ) ) ) |
72 |
71
|
reubidv |
|- ( ph -> ( E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( 0g ` C ) = ( g .xb ( S ` X ) ) ) ) |
73 |
62 72
|
mpbird |
|- ( ph -> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |