| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem3.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmap14lem1.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | hdmap14lem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem2.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 11 |  | hdmap14lem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem2.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem2.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem2.q | ⊢ 𝑄  =  ( 0g ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem3.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem6.f | ⊢ ( 𝜑  →  𝐹  =  𝑍 ) | 
						
							| 19 | 1 9 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 20 | 12 13 14 | lmod0cl | ⊢ ( 𝐶  ∈  LMod  →  𝑄  ∈  𝐴 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝑄  ∈  𝐴 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 23 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 1 2 3 9 22 15 16 23 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 26 | 22 12 10 14 25 | lmod0vs | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 27 | 19 24 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐶 )  =  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑔  =  𝑄  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 30 | 29 | rspceeqv | ⊢ ( ( 𝑄  ∈  𝐴  ∧  ( 0g ‘ 𝐶 )  =  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  ∃ 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 31 | 21 28 30 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 32 | 1 2 3 5 9 25 22 15 16 17 | hdmapnzcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 33 |  | eldifsni | ⊢ ( ( 𝑆 ‘ 𝑋 )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } )  →  ( 𝑆 ‘ 𝑋 )  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 35 | 34 | neneqd | ⊢ ( 𝜑  →  ¬  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ¬  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 37 |  | simp3l | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 38 | 37 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 39 | 1 9 16 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  𝐶  ∈  LVec ) | 
						
							| 41 |  | simp2l | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  𝑔  ∈  𝐴 ) | 
						
							| 42 | 24 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 43 | 22 10 12 13 14 25 40 41 42 | lvecvs0or | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 )  ↔  ( 𝑔  =  𝑄  ∨  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 44 | 38 43 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( 𝑔  =  𝑄  ∨  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 45 | 44 | orcomd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 )  ∨  𝑔  =  𝑄 ) ) | 
						
							| 46 | 45 | ord | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ¬  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 )  →  𝑔  =  𝑄 ) ) | 
						
							| 47 | 36 46 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  𝑔  =  𝑄 ) | 
						
							| 48 |  | simp3r | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 50 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ℎ  ∈  𝐴 ) | 
						
							| 51 | 22 10 12 13 14 25 40 50 42 | lvecvs0or | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 )  ↔  ( ℎ  =  𝑄  ∨  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 52 | 49 51 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ℎ  =  𝑄  ∨  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 53 | 52 | orcomd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 )  ∨  ℎ  =  𝑄 ) ) | 
						
							| 54 | 53 | ord | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ( ¬  ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ 𝐶 )  →  ℎ  =  𝑄 ) ) | 
						
							| 55 | 36 54 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  ℎ  =  𝑄 ) | 
						
							| 56 | 47 55 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  ∧  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) )  →  𝑔  =  ℎ ) | 
						
							| 57 | 56 | 3exp | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐴  ∧  ℎ  ∈  𝐴 )  →  ( ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  𝑔  =  ℎ ) ) ) | 
						
							| 58 | 57 | ralrimivv | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  𝐴 ∀ ℎ  ∈  𝐴 ( ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  𝑔  =  ℎ ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 60 | 59 | eqeq2d | ⊢ ( 𝑔  =  ℎ  →  ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 61 | 60 | reu4 | ⊢ ( ∃! 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ( ∃ 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ∀ 𝑔  ∈  𝐴 ∀ ℎ  ∈  𝐴 ( ( ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  ( 0g ‘ 𝐶 )  =  ( ℎ  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  𝑔  =  ℎ ) ) ) | 
						
							| 62 | 31 58 61 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 63 | 18 | oveq1d | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  =  ( 𝑍  ·  𝑋 ) ) | 
						
							| 64 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 65 | 3 6 4 8 5 | lmod0vs | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑍  ·  𝑋 )  =   0  ) | 
						
							| 66 | 64 23 65 | syl2anc | ⊢ ( 𝜑  →  ( 𝑍  ·  𝑋 )  =   0  ) | 
						
							| 67 | 63 66 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  =   0  ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑆 ‘  0  ) ) | 
						
							| 69 | 1 2 5 9 25 15 16 | hdmapval0 | ⊢ ( 𝜑  →  ( 𝑆 ‘  0  )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 70 | 68 69 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 71 | 70 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 72 | 71 | reubidv | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  𝐴 ( 0g ‘ 𝐶 )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 73 | 62 72 | mpbird | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) |