Metamath Proof Explorer


Theorem hdmap14lem6

Description: Case where F is zero. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem1.h H = LHyp K
hdmap14lem1.u U = DVecH K W
hdmap14lem1.v V = Base U
hdmap14lem1.t · ˙ = U
hdmap14lem3.o 0 ˙ = 0 U
hdmap14lem1.r R = Scalar U
hdmap14lem1.b B = Base R
hdmap14lem1.z Z = 0 R
hdmap14lem1.c C = LCDual K W
hdmap14lem2.e ˙ = C
hdmap14lem1.l L = LSpan C
hdmap14lem2.p P = Scalar C
hdmap14lem2.a A = Base P
hdmap14lem2.q Q = 0 P
hdmap14lem1.s S = HDMap K W
hdmap14lem1.k φ K HL W H
hdmap14lem3.x φ X V 0 ˙
hdmap14lem6.f φ F = Z
Assertion hdmap14lem6 φ ∃! g A S F · ˙ X = g ˙ S X

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H = LHyp K
2 hdmap14lem1.u U = DVecH K W
3 hdmap14lem1.v V = Base U
4 hdmap14lem1.t · ˙ = U
5 hdmap14lem3.o 0 ˙ = 0 U
6 hdmap14lem1.r R = Scalar U
7 hdmap14lem1.b B = Base R
8 hdmap14lem1.z Z = 0 R
9 hdmap14lem1.c C = LCDual K W
10 hdmap14lem2.e ˙ = C
11 hdmap14lem1.l L = LSpan C
12 hdmap14lem2.p P = Scalar C
13 hdmap14lem2.a A = Base P
14 hdmap14lem2.q Q = 0 P
15 hdmap14lem1.s S = HDMap K W
16 hdmap14lem1.k φ K HL W H
17 hdmap14lem3.x φ X V 0 ˙
18 hdmap14lem6.f φ F = Z
19 1 9 16 lcdlmod φ C LMod
20 12 13 14 lmod0cl C LMod Q A
21 19 20 syl φ Q A
22 eqid Base C = Base C
23 17 eldifad φ X V
24 1 2 3 9 22 15 16 23 hdmapcl φ S X Base C
25 eqid 0 C = 0 C
26 22 12 10 14 25 lmod0vs C LMod S X Base C Q ˙ S X = 0 C
27 19 24 26 syl2anc φ Q ˙ S X = 0 C
28 27 eqcomd φ 0 C = Q ˙ S X
29 oveq1 g = Q g ˙ S X = Q ˙ S X
30 29 rspceeqv Q A 0 C = Q ˙ S X g A 0 C = g ˙ S X
31 21 28 30 syl2anc φ g A 0 C = g ˙ S X
32 1 2 3 5 9 25 22 15 16 17 hdmapnzcl φ S X Base C 0 C
33 eldifsni S X Base C 0 C S X 0 C
34 32 33 syl φ S X 0 C
35 34 neneqd φ ¬ S X = 0 C
36 35 3ad2ant1 φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X ¬ S X = 0 C
37 simp3l φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X 0 C = g ˙ S X
38 37 eqcomd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g ˙ S X = 0 C
39 1 9 16 lcdlvec φ C LVec
40 39 3ad2ant1 φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X C LVec
41 simp2l φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g A
42 24 3ad2ant1 φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X S X Base C
43 22 10 12 13 14 25 40 41 42 lvecvs0or φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g ˙ S X = 0 C g = Q S X = 0 C
44 38 43 mpbid φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = Q S X = 0 C
45 44 orcomd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X S X = 0 C g = Q
46 45 ord φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X ¬ S X = 0 C g = Q
47 36 46 mpd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = Q
48 simp3r φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X 0 C = h ˙ S X
49 48 eqcomd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X h ˙ S X = 0 C
50 simp2r φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X h A
51 22 10 12 13 14 25 40 50 42 lvecvs0or φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X h ˙ S X = 0 C h = Q S X = 0 C
52 49 51 mpbid φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X h = Q S X = 0 C
53 52 orcomd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X S X = 0 C h = Q
54 53 ord φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X ¬ S X = 0 C h = Q
55 36 54 mpd φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X h = Q
56 47 55 eqtr4d φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = h
57 56 3exp φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = h
58 57 ralrimivv φ g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = h
59 oveq1 g = h g ˙ S X = h ˙ S X
60 59 eqeq2d g = h 0 C = g ˙ S X 0 C = h ˙ S X
61 60 reu4 ∃! g A 0 C = g ˙ S X g A 0 C = g ˙ S X g A h A 0 C = g ˙ S X 0 C = h ˙ S X g = h
62 31 58 61 sylanbrc φ ∃! g A 0 C = g ˙ S X
63 18 oveq1d φ F · ˙ X = Z · ˙ X
64 1 2 16 dvhlmod φ U LMod
65 3 6 4 8 5 lmod0vs U LMod X V Z · ˙ X = 0 ˙
66 64 23 65 syl2anc φ Z · ˙ X = 0 ˙
67 63 66 eqtrd φ F · ˙ X = 0 ˙
68 67 fveq2d φ S F · ˙ X = S 0 ˙
69 1 2 5 9 25 15 16 hdmapval0 φ S 0 ˙ = 0 C
70 68 69 eqtrd φ S F · ˙ X = 0 C
71 70 eqeq1d φ S F · ˙ X = g ˙ S X 0 C = g ˙ S X
72 71 reubidv φ ∃! g A S F · ˙ X = g ˙ S X ∃! g A 0 C = g ˙ S X
73 62 72 mpbird φ ∃! g A S F · ˙ X = g ˙ S X