Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem1.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem3.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap14lem1.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmap14lem1.b |
|- B = ( Base ` R ) |
8 |
|
hdmap14lem1.z |
|- Z = ( 0g ` R ) |
9 |
|
hdmap14lem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
10 |
|
hdmap14lem2.e |
|- .xb = ( .s ` C ) |
11 |
|
hdmap14lem1.l |
|- L = ( LSpan ` C ) |
12 |
|
hdmap14lem2.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem2.a |
|- A = ( Base ` P ) |
14 |
|
hdmap14lem2.q |
|- Q = ( 0g ` P ) |
15 |
|
hdmap14lem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
16 |
|
hdmap14lem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap14lem3.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
hdmap14lem1.f |
|- ( ph -> F e. ( B \ { Z } ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmap14lem1 |
|- ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) |
20 |
19
|
eqcomd |
|- ( ph -> ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) ) |
21 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
22 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
23 |
1 9 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
24 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
25 |
18
|
eldifad |
|- ( ph -> F e. B ) |
26 |
17
|
eldifad |
|- ( ph -> X e. V ) |
27 |
3 6 4 7
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
28 |
24 25 26 27
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
29 |
1 2 3 9 21 15 16 28
|
hdmapcl |
|- ( ph -> ( S ` ( F .x. X ) ) e. ( Base ` C ) ) |
30 |
1 2 3 5 9 22 21 15 16 17
|
hdmapnzcl |
|- ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) |
31 |
21 12 13 14 10 22 11 23 29 30
|
lspsneu |
|- ( ph -> ( ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
32 |
20 31
|
mpbid |
|- ( ph -> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |