| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem3.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap14lem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmap14lem1.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmap14lem1.z |  |-  Z = ( 0g ` R ) | 
						
							| 9 |  | hdmap14lem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem2.e |  |-  .xb = ( .s ` C ) | 
						
							| 11 |  | hdmap14lem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 12 |  | hdmap14lem2.p |  |-  P = ( Scalar ` C ) | 
						
							| 13 |  | hdmap14lem2.a |  |-  A = ( Base ` P ) | 
						
							| 14 |  | hdmap14lem2.q |  |-  Q = ( 0g ` P ) | 
						
							| 15 |  | hdmap14lem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem3.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem1.f |  |-  ( ph -> F e. ( B \ { Z } ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmap14lem1 |  |-  ( ph -> ( L ` { ( S ` X ) } ) = ( L ` { ( S ` ( F .x. X ) ) } ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ph -> ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 23 | 1 9 16 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 24 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 25 | 18 | eldifad |  |-  ( ph -> F e. B ) | 
						
							| 26 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 27 | 3 6 4 7 | lmodvscl |  |-  ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) | 
						
							| 28 | 24 25 26 27 | syl3anc |  |-  ( ph -> ( F .x. X ) e. V ) | 
						
							| 29 | 1 2 3 9 21 15 16 28 | hdmapcl |  |-  ( ph -> ( S ` ( F .x. X ) ) e. ( Base ` C ) ) | 
						
							| 30 | 1 2 3 5 9 22 21 15 16 17 | hdmapnzcl |  |-  ( ph -> ( S ` X ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) | 
						
							| 31 | 21 12 13 14 10 22 11 23 29 30 | lspsneu |  |-  ( ph -> ( ( L ` { ( S ` ( F .x. X ) ) } ) = ( L ` { ( S ` X ) } ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 32 | 20 31 | mpbid |  |-  ( ph -> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |