Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem3.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap14lem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmap14lem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmap14lem1.z |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
9 |
|
hdmap14lem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap14lem2.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
11 |
|
hdmap14lem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
12 |
|
hdmap14lem2.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
13 |
|
hdmap14lem2.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
14 |
|
hdmap14lem2.q |
⊢ 𝑄 = ( 0g ‘ 𝑃 ) |
15 |
|
hdmap14lem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hdmap14lem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hdmap14lem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
hdmap14lem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmap14lem1 |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) ) |
20 |
19
|
eqcomd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
23 |
1 9 16
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
24 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
25 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
26 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
27 |
3 6 4 7
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
29 |
1 2 3 9 21 15 16 28
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( Base ‘ 𝐶 ) ) |
30 |
1 2 3 5 9 22 21 15 16 17
|
hdmapnzcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g ‘ 𝐶 ) } ) ) |
31 |
21 12 13 14 10 22 11 23 29 30
|
lspsneu |
⊢ ( 𝜑 → ( ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ↔ ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
32 |
20 31
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |