| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem3.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmap14lem1.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | hdmap14lem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem2.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 11 |  | hdmap14lem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem2.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem2.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem2.q | ⊢ 𝑄  =  ( 0g ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem3.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐵  ∖  { 𝑍 } ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmap14lem1 | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } )  =  ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) ) } ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) ) } )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 23 | 1 9 16 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 24 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 25 | 18 | eldifad | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 26 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 27 | 3 6 4 7 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐹  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 28 | 24 25 26 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 29 | 1 2 3 9 21 15 16 28 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 30 | 1 2 3 5 9 22 21 15 16 17 | hdmapnzcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 31 | 21 12 13 14 10 22 11 23 29 30 | lspsneu | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) ) } )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } )  ↔  ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 32 | 20 31 | mpbid | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) |