| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneu.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsneu.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lspsneu.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 4 |
|
lspsneu.o |
⊢ 𝑂 = ( 0g ‘ 𝑆 ) |
| 5 |
|
lspsneu.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
lspsneu.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 7 |
|
lspsneu.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 8 |
|
lspsneu.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 9 |
|
lspsneu.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
lspsneu.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 12 |
1 2 3 4 5 7 8 9 11
|
lspsneq |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 13 |
12
|
biimpd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 14 |
|
eqtr2 |
⊢ ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) |
| 16 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝜑 ) |
| 17 |
16 8
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑊 ∈ LVec ) |
| 18 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ) |
| 19 |
18
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 ∈ 𝐾 ) |
| 20 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) |
| 21 |
20
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑖 ∈ 𝐾 ) |
| 22 |
16 11
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 23 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
| 24 |
16 10 23
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑌 ≠ 0 ) |
| 25 |
1 5 2 3 6 17 19 21 22 24
|
lvecvscan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → ( ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ↔ 𝑗 = 𝑖 ) ) |
| 26 |
15 25
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 = 𝑖 ) |
| 27 |
26
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) → ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 28 |
27
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) → ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) ) |
| 29 |
28
|
ralrimdvv |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 30 |
13 29
|
jcad |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ∧ ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑖 · 𝑌 ) ) ) |
| 33 |
32
|
reu4 |
⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ∧ ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 34 |
30 33
|
imbitrrdi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 35 |
|
reurex |
⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 36 |
35 12
|
imbitrrid |
⊢ ( 𝜑 → ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 37 |
34 36
|
impbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝑌 ) = ( 𝑘 · 𝑌 ) ) |
| 39 |
38
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 40 |
39
|
cbvreuvw |
⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ∃! 𝑘 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) |
| 41 |
37 40
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃! 𝑘 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |