Step |
Hyp |
Ref |
Expression |
1 |
|
lvecmulcan2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lvecmulcan2.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
lvecmulcan2.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lvecmulcan2.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lvecmulcan2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
6 |
|
lvecmulcan2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lvecmulcan2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
8 |
|
lvecmulcan2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
9 |
|
lvecmulcan2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lvecmulcan2.n |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
11 |
10
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑋 = 0 ) |
12 |
|
biorf |
⊢ ( ¬ 𝑋 = 0 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( 𝑋 = 0 ∨ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ) ) |
13 |
|
orcom |
⊢ ( ( 𝑋 = 0 ∨ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) |
14 |
12 13
|
bitrdi |
⊢ ( ¬ 𝑋 = 0 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
15 |
11 14
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
17 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
19 |
3
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
21 |
|
eqid |
⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) |
22 |
4 21
|
grpsubcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
23 |
20 7 8 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
24 |
1 2 3 4 16 5 6 23 9
|
lvecvs0or |
⊢ ( 𝜑 → ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = 0 ↔ ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ∨ 𝑋 = 0 ) ) ) |
25 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
26 |
1 2 3 4 25 21 18 7 8 9
|
lmodsubdir |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = 0 ↔ ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ) ) |
28 |
15 24 27
|
3bitr2rd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ) ) |
29 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
30 |
18 7 9 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
31 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
32 |
18 8 9 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
33 |
1 5 25
|
lmodsubeq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) ) |
34 |
18 30 32 33
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝑋 ) ) = 0 ↔ ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) ) |
35 |
4 16 21
|
grpsubeq0 |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ 𝐴 = 𝐵 ) ) |
36 |
20 7 8 35
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 0g ‘ 𝐹 ) ↔ 𝐴 = 𝐵 ) ) |
37 |
28 34 36
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ↔ 𝐴 = 𝐵 ) ) |