Metamath Proof Explorer


Theorem lspsneu

Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses lspsneu.v V=BaseW
lspsneu.s S=ScalarW
lspsneu.k K=BaseS
lspsneu.o O=0S
lspsneu.t ·˙=W
lspsneu.z 0˙=0W
lspsneu.n N=LSpanW
lspsneu.w φWLVec
lspsneu.x φXV
lspsneu.y φYV0˙
Assertion lspsneu φNX=NY∃!kKOX=k·˙Y

Proof

Step Hyp Ref Expression
1 lspsneu.v V=BaseW
2 lspsneu.s S=ScalarW
3 lspsneu.k K=BaseS
4 lspsneu.o O=0S
5 lspsneu.t ·˙=W
6 lspsneu.z 0˙=0W
7 lspsneu.n N=LSpanW
8 lspsneu.w φWLVec
9 lspsneu.x φXV
10 lspsneu.y φYV0˙
11 10 eldifad φYV
12 1 2 3 4 5 7 8 9 11 lspsneq φNX=NYjKOX=j·˙Y
13 12 biimpd φNX=NYjKOX=j·˙Y
14 eqtr2 X=j·˙YX=i·˙Yj·˙Y=i·˙Y
15 14 3ad2ant3 φNX=NYjKOiKOX=j·˙YX=i·˙Yj·˙Y=i·˙Y
16 simp1l φNX=NYjKOiKOX=j·˙YX=i·˙Yφ
17 16 8 syl φNX=NYjKOiKOX=j·˙YX=i·˙YWLVec
18 simp2l φNX=NYjKOiKOX=j·˙YX=i·˙YjKO
19 18 eldifad φNX=NYjKOiKOX=j·˙YX=i·˙YjK
20 simp2r φNX=NYjKOiKOX=j·˙YX=i·˙YiKO
21 20 eldifad φNX=NYjKOiKOX=j·˙YX=i·˙YiK
22 16 11 syl φNX=NYjKOiKOX=j·˙YX=i·˙YYV
23 eldifsni YV0˙Y0˙
24 16 10 23 3syl φNX=NYjKOiKOX=j·˙YX=i·˙YY0˙
25 1 5 2 3 6 17 19 21 22 24 lvecvscan2 φNX=NYjKOiKOX=j·˙YX=i·˙Yj·˙Y=i·˙Yj=i
26 15 25 mpbid φNX=NYjKOiKOX=j·˙YX=i·˙Yj=i
27 26 3exp φNX=NYjKOiKOX=j·˙YX=i·˙Yj=i
28 27 ex φNX=NYjKOiKOX=j·˙YX=i·˙Yj=i
29 28 ralrimdvv φNX=NYjKOiKOX=j·˙YX=i·˙Yj=i
30 13 29 jcad φNX=NYjKOX=j·˙YjKOiKOX=j·˙YX=i·˙Yj=i
31 oveq1 j=ij·˙Y=i·˙Y
32 31 eqeq2d j=iX=j·˙YX=i·˙Y
33 32 reu4 ∃!jKOX=j·˙YjKOX=j·˙YjKOiKOX=j·˙YX=i·˙Yj=i
34 30 33 imbitrrdi φNX=NY∃!jKOX=j·˙Y
35 reurex ∃!jKOX=j·˙YjKOX=j·˙Y
36 35 12 imbitrrid φ∃!jKOX=j·˙YNX=NY
37 34 36 impbid φNX=NY∃!jKOX=j·˙Y
38 oveq1 j=kj·˙Y=k·˙Y
39 38 eqeq2d j=kX=j·˙YX=k·˙Y
40 39 cbvreuvw ∃!jKOX=j·˙Y∃!kKOX=k·˙Y
41 37 40 bitrdi φNX=NY∃!kKOX=k·˙Y