| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem3.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmap14lem1.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | hdmap14lem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem2.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 11 |  | hdmap14lem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem2.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem2.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem2.q | ⊢ 𝑄  =  ( 0g ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem3.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐵  ∖  { 𝑍 } ) ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 21 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 22 | 18 | eldifad | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 23 | 17 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 3 6 4 7 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐹  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 25 | 21 22 23 24 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 26 |  | eldifsni | ⊢ ( 𝐹  ∈  ( 𝐵  ∖  { 𝑍 } )  →  𝐹  ≠  𝑍 ) | 
						
							| 27 | 18 26 | syl | ⊢ ( 𝜑  →  𝐹  ≠  𝑍 ) | 
						
							| 28 |  | eldifsni | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  →  𝑋  ≠   0  ) | 
						
							| 29 | 17 28 | syl | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 30 | 1 2 16 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 31 | 3 4 6 7 8 5 30 22 23 | lvecvsn0 | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝑋 )  ≠   0   ↔  ( 𝐹  ≠  𝑍  ∧  𝑋  ≠   0  ) ) ) | 
						
							| 32 | 27 29 31 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  ≠   0  ) | 
						
							| 33 |  | eldifsn | ⊢ ( ( 𝐹  ·  𝑋 )  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( ( 𝐹  ·  𝑋 )  ∈  𝑉  ∧  ( 𝐹  ·  𝑋 )  ≠   0  ) ) | 
						
							| 34 | 25 32 33 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝑋 )  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 35 | 1 2 3 5 9 19 20 15 16 34 | hdmapnzcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 36 |  | eldifsni | ⊢ ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ∈  ( ( Base ‘ 𝐶 )  ∖  { ( 0g ‘ 𝐶 ) } )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  { 𝑄 } )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 39 |  | elsni | ⊢ ( 𝑔  ∈  { 𝑄 }  →  𝑔  =  𝑄 ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝑔  ∈  { 𝑄 }  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 41 | 1 9 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 42 | 1 2 3 9 20 15 16 23 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 43 | 20 12 10 14 19 | lmod0vs | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 44 | 41 42 43 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 45 | 40 44 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  { 𝑄 } )  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 46 | 38 45 | neeqtrrd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  { 𝑄 } )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  ≠  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 47 | 46 | neneqd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  { 𝑄 } )  →  ¬  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 48 | 47 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑔  ∈  { 𝑄 } ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 49 |  | reuun2 | ⊢ ( ¬  ∃ 𝑔  ∈  { 𝑄 } ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  →  ( ∃! 𝑔  ∈  ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 51 | 12 13 14 | lmod0cl | ⊢ ( 𝐶  ∈  LMod  →  𝑄  ∈  𝐴 ) | 
						
							| 52 |  | difsnid | ⊢ ( 𝑄  ∈  𝐴  →  ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } )  =  𝐴 ) | 
						
							| 53 |  | reueq1 | ⊢ ( ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } )  =  𝐴  →  ( ∃! 𝑔  ∈  ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 54 | 41 51 52 53 | 4syl | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  ( ( 𝐴  ∖  { 𝑄 } )  ∪  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 55 | 50 54 | bitr3d | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) |