Metamath Proof Explorer


Theorem hdmap14lem4a

Description: Simplify ( A \ { Q } ) in hdmap14lem3 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem1.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem1.t · = ( ·𝑠𝑈 )
hdmap14lem3.o 0 = ( 0g𝑈 )
hdmap14lem1.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem1.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem1.z 𝑍 = ( 0g𝑅 )
hdmap14lem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem2.e = ( ·𝑠𝐶 )
hdmap14lem1.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap14lem2.p 𝑃 = ( Scalar ‘ 𝐶 )
hdmap14lem2.a 𝐴 = ( Base ‘ 𝑃 )
hdmap14lem2.q 𝑄 = ( 0g𝑃 )
hdmap14lem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem3.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap14lem1.f ( 𝜑𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) )
Assertion hdmap14lem4a ( 𝜑 → ( ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem1.t · = ( ·𝑠𝑈 )
5 hdmap14lem3.o 0 = ( 0g𝑈 )
6 hdmap14lem1.r 𝑅 = ( Scalar ‘ 𝑈 )
7 hdmap14lem1.b 𝐵 = ( Base ‘ 𝑅 )
8 hdmap14lem1.z 𝑍 = ( 0g𝑅 )
9 hdmap14lem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap14lem2.e = ( ·𝑠𝐶 )
11 hdmap14lem1.l 𝐿 = ( LSpan ‘ 𝐶 )
12 hdmap14lem2.p 𝑃 = ( Scalar ‘ 𝐶 )
13 hdmap14lem2.a 𝐴 = ( Base ‘ 𝑃 )
14 hdmap14lem2.q 𝑄 = ( 0g𝑃 )
15 hdmap14lem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap14lem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap14lem3.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 hdmap14lem1.f ( 𝜑𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) )
19 eqid ( 0g𝐶 ) = ( 0g𝐶 )
20 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
21 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
22 18 eldifad ( 𝜑𝐹𝐵 )
23 17 eldifad ( 𝜑𝑋𝑉 )
24 3 6 4 7 lmodvscl ( ( 𝑈 ∈ LMod ∧ 𝐹𝐵𝑋𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 )
25 21 22 23 24 syl3anc ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 )
26 eldifsni ( 𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) → 𝐹𝑍 )
27 18 26 syl ( 𝜑𝐹𝑍 )
28 eldifsni ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋0 )
29 17 28 syl ( 𝜑𝑋0 )
30 1 2 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
31 3 4 6 7 8 5 30 22 23 lvecvsn0 ( 𝜑 → ( ( 𝐹 · 𝑋 ) ≠ 0 ↔ ( 𝐹𝑍𝑋0 ) ) )
32 27 29 31 mpbir2and ( 𝜑 → ( 𝐹 · 𝑋 ) ≠ 0 )
33 eldifsn ( ( 𝐹 · 𝑋 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝐹 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐹 · 𝑋 ) ≠ 0 ) )
34 25 32 33 sylanbrc ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ ( 𝑉 ∖ { 0 } ) )
35 1 2 3 5 9 19 20 15 16 34 hdmapnzcl ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g𝐶 ) } ) )
36 eldifsni ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g𝐶 ) } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g𝐶 ) )
37 35 36 syl ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g𝐶 ) )
38 37 adantr ( ( 𝜑𝑔 ∈ { 𝑄 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g𝐶 ) )
39 elsni ( 𝑔 ∈ { 𝑄 } → 𝑔 = 𝑄 )
40 39 oveq1d ( 𝑔 ∈ { 𝑄 } → ( 𝑔 ( 𝑆𝑋 ) ) = ( 𝑄 ( 𝑆𝑋 ) ) )
41 1 9 16 lcdlmod ( 𝜑𝐶 ∈ LMod )
42 1 2 3 9 20 15 16 23 hdmapcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( Base ‘ 𝐶 ) )
43 20 12 10 14 19 lmod0vs ( ( 𝐶 ∈ LMod ∧ ( 𝑆𝑋 ) ∈ ( Base ‘ 𝐶 ) ) → ( 𝑄 ( 𝑆𝑋 ) ) = ( 0g𝐶 ) )
44 41 42 43 syl2anc ( 𝜑 → ( 𝑄 ( 𝑆𝑋 ) ) = ( 0g𝐶 ) )
45 40 44 sylan9eqr ( ( 𝜑𝑔 ∈ { 𝑄 } ) → ( 𝑔 ( 𝑆𝑋 ) ) = ( 0g𝐶 ) )
46 38 45 neeqtrrd ( ( 𝜑𝑔 ∈ { 𝑄 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 𝑔 ( 𝑆𝑋 ) ) )
47 46 neneqd ( ( 𝜑𝑔 ∈ { 𝑄 } ) → ¬ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) )
48 47 nrexdv ( 𝜑 → ¬ ∃ 𝑔 ∈ { 𝑄 } ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) )
49 reuun2 ( ¬ ∃ 𝑔 ∈ { 𝑄 } ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )
50 48 49 syl ( 𝜑 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )
51 12 13 14 lmod0cl ( 𝐶 ∈ LMod → 𝑄𝐴 )
52 difsnid ( 𝑄𝐴 → ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) = 𝐴 )
53 reueq1 ( ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) = 𝐴 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )
54 41 51 52 53 4syl ( 𝜑 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )
55 50 54 bitr3d ( 𝜑 → ( ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ↔ ∃! 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ( 𝑆𝑋 ) ) ) )