| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap14lem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmap14lem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmap14lem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmap14lem1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 5 |
|
hdmap14lem3.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
hdmap14lem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 7 |
|
hdmap14lem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 8 |
|
hdmap14lem1.z |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
| 9 |
|
hdmap14lem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
hdmap14lem2.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
| 11 |
|
hdmap14lem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 12 |
|
hdmap14lem2.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
| 13 |
|
hdmap14lem2.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
| 14 |
|
hdmap14lem2.q |
⊢ 𝑄 = ( 0g ‘ 𝑃 ) |
| 15 |
|
hdmap14lem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
|
hdmap14lem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
|
hdmap14lem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 18 |
|
hdmap14lem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 21 |
1 2 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 22 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 23 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 24 |
3 6 4 7
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
| 25 |
21 22 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
| 26 |
|
eldifsni |
⊢ ( 𝐹 ∈ ( 𝐵 ∖ { 𝑍 } ) → 𝐹 ≠ 𝑍 ) |
| 27 |
18 26
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ 𝑍 ) |
| 28 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 29 |
17 28
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 30 |
1 2 16
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 31 |
3 4 6 7 8 5 30 22 23
|
lvecvsn0 |
⊢ ( 𝜑 → ( ( 𝐹 · 𝑋 ) ≠ 0 ↔ ( 𝐹 ≠ 𝑍 ∧ 𝑋 ≠ 0 ) ) ) |
| 32 |
27 29 31
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ≠ 0 ) |
| 33 |
|
eldifsn |
⊢ ( ( 𝐹 · 𝑋 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝐹 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐹 · 𝑋 ) ≠ 0 ) ) |
| 34 |
25 32 33
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 35 |
1 2 3 5 9 19 20 15 16 34
|
hdmapnzcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g ‘ 𝐶 ) } ) ) |
| 36 |
|
eldifsni |
⊢ ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( ( Base ‘ 𝐶 ) ∖ { ( 0g ‘ 𝐶 ) } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g ‘ 𝐶 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g ‘ 𝐶 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ { 𝑄 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 0g ‘ 𝐶 ) ) |
| 39 |
|
elsni |
⊢ ( 𝑔 ∈ { 𝑄 } → 𝑔 = 𝑄 ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝑔 ∈ { 𝑄 } → ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑄 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
| 41 |
1 9 16
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 42 |
1 2 3 9 20 15 16 23
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) |
| 43 |
20 12 10 14 19
|
lmod0vs |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) → ( 𝑄 ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 0g ‘ 𝐶 ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 0g ‘ 𝐶 ) ) |
| 45 |
40 44
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ { 𝑄 } ) → ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 0g ‘ 𝐶 ) ) |
| 46 |
38 45
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ { 𝑄 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ≠ ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
| 47 |
46
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ { 𝑄 } ) → ¬ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
| 48 |
47
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑔 ∈ { 𝑄 } ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
| 49 |
|
reuun2 |
⊢ ( ¬ ∃ 𝑔 ∈ { 𝑄 } ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 51 |
12 13 14
|
lmod0cl |
⊢ ( 𝐶 ∈ LMod → 𝑄 ∈ 𝐴 ) |
| 52 |
|
difsnid |
⊢ ( 𝑄 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) = 𝐴 ) |
| 53 |
|
reueq1 |
⊢ ( ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) = 𝐴 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 54 |
41 51 52 53
|
4syl |
⊢ ( 𝜑 → ( ∃! 𝑔 ∈ ( ( 𝐴 ∖ { 𝑄 } ) ∪ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
| 55 |
50 54
|
bitr3d |
⊢ ( 𝜑 → ( ∃! 𝑔 ∈ ( 𝐴 ∖ { 𝑄 } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃! 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |