Metamath Proof Explorer


Theorem hdmap14lem4a

Description: Simplify ( A \ { Q } ) in hdmap14lem3 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h H = LHyp K
hdmap14lem1.u U = DVecH K W
hdmap14lem1.v V = Base U
hdmap14lem1.t · ˙ = U
hdmap14lem3.o 0 ˙ = 0 U
hdmap14lem1.r R = Scalar U
hdmap14lem1.b B = Base R
hdmap14lem1.z Z = 0 R
hdmap14lem1.c C = LCDual K W
hdmap14lem2.e ˙ = C
hdmap14lem1.l L = LSpan C
hdmap14lem2.p P = Scalar C
hdmap14lem2.a A = Base P
hdmap14lem2.q Q = 0 P
hdmap14lem1.s S = HDMap K W
hdmap14lem1.k φ K HL W H
hdmap14lem3.x φ X V 0 ˙
hdmap14lem1.f φ F B Z
Assertion hdmap14lem4a φ ∃! g A Q S F · ˙ X = g ˙ S X ∃! g A S F · ˙ X = g ˙ S X

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H = LHyp K
2 hdmap14lem1.u U = DVecH K W
3 hdmap14lem1.v V = Base U
4 hdmap14lem1.t · ˙ = U
5 hdmap14lem3.o 0 ˙ = 0 U
6 hdmap14lem1.r R = Scalar U
7 hdmap14lem1.b B = Base R
8 hdmap14lem1.z Z = 0 R
9 hdmap14lem1.c C = LCDual K W
10 hdmap14lem2.e ˙ = C
11 hdmap14lem1.l L = LSpan C
12 hdmap14lem2.p P = Scalar C
13 hdmap14lem2.a A = Base P
14 hdmap14lem2.q Q = 0 P
15 hdmap14lem1.s S = HDMap K W
16 hdmap14lem1.k φ K HL W H
17 hdmap14lem3.x φ X V 0 ˙
18 hdmap14lem1.f φ F B Z
19 eqid 0 C = 0 C
20 eqid Base C = Base C
21 1 2 16 dvhlmod φ U LMod
22 18 eldifad φ F B
23 17 eldifad φ X V
24 3 6 4 7 lmodvscl U LMod F B X V F · ˙ X V
25 21 22 23 24 syl3anc φ F · ˙ X V
26 eldifsni F B Z F Z
27 18 26 syl φ F Z
28 eldifsni X V 0 ˙ X 0 ˙
29 17 28 syl φ X 0 ˙
30 1 2 16 dvhlvec φ U LVec
31 3 4 6 7 8 5 30 22 23 lvecvsn0 φ F · ˙ X 0 ˙ F Z X 0 ˙
32 27 29 31 mpbir2and φ F · ˙ X 0 ˙
33 eldifsn F · ˙ X V 0 ˙ F · ˙ X V F · ˙ X 0 ˙
34 25 32 33 sylanbrc φ F · ˙ X V 0 ˙
35 1 2 3 5 9 19 20 15 16 34 hdmapnzcl φ S F · ˙ X Base C 0 C
36 eldifsni S F · ˙ X Base C 0 C S F · ˙ X 0 C
37 35 36 syl φ S F · ˙ X 0 C
38 37 adantr φ g Q S F · ˙ X 0 C
39 elsni g Q g = Q
40 39 oveq1d g Q g ˙ S X = Q ˙ S X
41 1 9 16 lcdlmod φ C LMod
42 1 2 3 9 20 15 16 23 hdmapcl φ S X Base C
43 20 12 10 14 19 lmod0vs C LMod S X Base C Q ˙ S X = 0 C
44 41 42 43 syl2anc φ Q ˙ S X = 0 C
45 40 44 sylan9eqr φ g Q g ˙ S X = 0 C
46 38 45 neeqtrrd φ g Q S F · ˙ X g ˙ S X
47 46 neneqd φ g Q ¬ S F · ˙ X = g ˙ S X
48 47 nrexdv φ ¬ g Q S F · ˙ X = g ˙ S X
49 reuun2 ¬ g Q S F · ˙ X = g ˙ S X ∃! g A Q Q S F · ˙ X = g ˙ S X ∃! g A Q S F · ˙ X = g ˙ S X
50 48 49 syl φ ∃! g A Q Q S F · ˙ X = g ˙ S X ∃! g A Q S F · ˙ X = g ˙ S X
51 12 13 14 lmod0cl C LMod Q A
52 difsnid Q A A Q Q = A
53 reueq1 A Q Q = A ∃! g A Q Q S F · ˙ X = g ˙ S X ∃! g A S F · ˙ X = g ˙ S X
54 41 51 52 53 4syl φ ∃! g A Q Q S F · ˙ X = g ˙ S X ∃! g A S F · ˙ X = g ˙ S X
55 50 54 bitr3d φ ∃! g A Q S F · ˙ X = g ˙ S X ∃! g A S F · ˙ X = g ˙ S X