Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem1.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem3.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap14lem1.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmap14lem1.b |
|- B = ( Base ` R ) |
8 |
|
hdmap14lem1.z |
|- Z = ( 0g ` R ) |
9 |
|
hdmap14lem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
10 |
|
hdmap14lem2.e |
|- .xb = ( .s ` C ) |
11 |
|
hdmap14lem1.l |
|- L = ( LSpan ` C ) |
12 |
|
hdmap14lem2.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem2.a |
|- A = ( Base ` P ) |
14 |
|
hdmap14lem2.q |
|- Q = ( 0g ` P ) |
15 |
|
hdmap14lem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
16 |
|
hdmap14lem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hdmap14lem3.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
hdmap14lem1.f |
|- ( ph -> F e. ( B \ { Z } ) ) |
19 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
20 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
21 |
1 2 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
22 |
18
|
eldifad |
|- ( ph -> F e. B ) |
23 |
17
|
eldifad |
|- ( ph -> X e. V ) |
24 |
3 6 4 7
|
lmodvscl |
|- ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) |
25 |
21 22 23 24
|
syl3anc |
|- ( ph -> ( F .x. X ) e. V ) |
26 |
|
eldifsni |
|- ( F e. ( B \ { Z } ) -> F =/= Z ) |
27 |
18 26
|
syl |
|- ( ph -> F =/= Z ) |
28 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
29 |
17 28
|
syl |
|- ( ph -> X =/= .0. ) |
30 |
1 2 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
31 |
3 4 6 7 8 5 30 22 23
|
lvecvsn0 |
|- ( ph -> ( ( F .x. X ) =/= .0. <-> ( F =/= Z /\ X =/= .0. ) ) ) |
32 |
27 29 31
|
mpbir2and |
|- ( ph -> ( F .x. X ) =/= .0. ) |
33 |
|
eldifsn |
|- ( ( F .x. X ) e. ( V \ { .0. } ) <-> ( ( F .x. X ) e. V /\ ( F .x. X ) =/= .0. ) ) |
34 |
25 32 33
|
sylanbrc |
|- ( ph -> ( F .x. X ) e. ( V \ { .0. } ) ) |
35 |
1 2 3 5 9 19 20 15 16 34
|
hdmapnzcl |
|- ( ph -> ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) |
36 |
|
eldifsni |
|- ( ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) |
37 |
35 36
|
syl |
|- ( ph -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) |
39 |
|
elsni |
|- ( g e. { Q } -> g = Q ) |
40 |
39
|
oveq1d |
|- ( g e. { Q } -> ( g .xb ( S ` X ) ) = ( Q .xb ( S ` X ) ) ) |
41 |
1 9 16
|
lcdlmod |
|- ( ph -> C e. LMod ) |
42 |
1 2 3 9 20 15 16 23
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` C ) ) |
43 |
20 12 10 14 19
|
lmod0vs |
|- ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ph -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) |
45 |
40 44
|
sylan9eqr |
|- ( ( ph /\ g e. { Q } ) -> ( g .xb ( S ` X ) ) = ( 0g ` C ) ) |
46 |
38 45
|
neeqtrrd |
|- ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( g .xb ( S ` X ) ) ) |
47 |
46
|
neneqd |
|- ( ( ph /\ g e. { Q } ) -> -. ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
48 |
47
|
nrexdv |
|- ( ph -> -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) |
49 |
|
reuun2 |
|- ( -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
50 |
48 49
|
syl |
|- ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
51 |
12 13 14
|
lmod0cl |
|- ( C e. LMod -> Q e. A ) |
52 |
|
difsnid |
|- ( Q e. A -> ( ( A \ { Q } ) u. { Q } ) = A ) |
53 |
|
reueq1 |
|- ( ( ( A \ { Q } ) u. { Q } ) = A -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
54 |
41 51 52 53
|
4syl |
|- ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |
55 |
50 54
|
bitr3d |
|- ( ph -> ( E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |