Metamath Proof Explorer


Theorem hdmap14lem4a

Description: Simplify ( A \ { Q } ) in hdmap14lem3 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h
|- H = ( LHyp ` K )
hdmap14lem1.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem1.v
|- V = ( Base ` U )
hdmap14lem1.t
|- .x. = ( .s ` U )
hdmap14lem3.o
|- .0. = ( 0g ` U )
hdmap14lem1.r
|- R = ( Scalar ` U )
hdmap14lem1.b
|- B = ( Base ` R )
hdmap14lem1.z
|- Z = ( 0g ` R )
hdmap14lem1.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem2.e
|- .xb = ( .s ` C )
hdmap14lem1.l
|- L = ( LSpan ` C )
hdmap14lem2.p
|- P = ( Scalar ` C )
hdmap14lem2.a
|- A = ( Base ` P )
hdmap14lem2.q
|- Q = ( 0g ` P )
hdmap14lem1.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem3.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap14lem1.f
|- ( ph -> F e. ( B \ { Z } ) )
Assertion hdmap14lem4a
|- ( ph -> ( E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h
 |-  H = ( LHyp ` K )
2 hdmap14lem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem1.v
 |-  V = ( Base ` U )
4 hdmap14lem1.t
 |-  .x. = ( .s ` U )
5 hdmap14lem3.o
 |-  .0. = ( 0g ` U )
6 hdmap14lem1.r
 |-  R = ( Scalar ` U )
7 hdmap14lem1.b
 |-  B = ( Base ` R )
8 hdmap14lem1.z
 |-  Z = ( 0g ` R )
9 hdmap14lem1.c
 |-  C = ( ( LCDual ` K ) ` W )
10 hdmap14lem2.e
 |-  .xb = ( .s ` C )
11 hdmap14lem1.l
 |-  L = ( LSpan ` C )
12 hdmap14lem2.p
 |-  P = ( Scalar ` C )
13 hdmap14lem2.a
 |-  A = ( Base ` P )
14 hdmap14lem2.q
 |-  Q = ( 0g ` P )
15 hdmap14lem1.s
 |-  S = ( ( HDMap ` K ) ` W )
16 hdmap14lem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hdmap14lem3.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
18 hdmap14lem1.f
 |-  ( ph -> F e. ( B \ { Z } ) )
19 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
20 eqid
 |-  ( Base ` C ) = ( Base ` C )
21 1 2 16 dvhlmod
 |-  ( ph -> U e. LMod )
22 18 eldifad
 |-  ( ph -> F e. B )
23 17 eldifad
 |-  ( ph -> X e. V )
24 3 6 4 7 lmodvscl
 |-  ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V )
25 21 22 23 24 syl3anc
 |-  ( ph -> ( F .x. X ) e. V )
26 eldifsni
 |-  ( F e. ( B \ { Z } ) -> F =/= Z )
27 18 26 syl
 |-  ( ph -> F =/= Z )
28 eldifsni
 |-  ( X e. ( V \ { .0. } ) -> X =/= .0. )
29 17 28 syl
 |-  ( ph -> X =/= .0. )
30 1 2 16 dvhlvec
 |-  ( ph -> U e. LVec )
31 3 4 6 7 8 5 30 22 23 lvecvsn0
 |-  ( ph -> ( ( F .x. X ) =/= .0. <-> ( F =/= Z /\ X =/= .0. ) ) )
32 27 29 31 mpbir2and
 |-  ( ph -> ( F .x. X ) =/= .0. )
33 eldifsn
 |-  ( ( F .x. X ) e. ( V \ { .0. } ) <-> ( ( F .x. X ) e. V /\ ( F .x. X ) =/= .0. ) )
34 25 32 33 sylanbrc
 |-  ( ph -> ( F .x. X ) e. ( V \ { .0. } ) )
35 1 2 3 5 9 19 20 15 16 34 hdmapnzcl
 |-  ( ph -> ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) )
36 eldifsni
 |-  ( ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) )
37 35 36 syl
 |-  ( ph -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) )
38 37 adantr
 |-  ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) )
39 elsni
 |-  ( g e. { Q } -> g = Q )
40 39 oveq1d
 |-  ( g e. { Q } -> ( g .xb ( S ` X ) ) = ( Q .xb ( S ` X ) ) )
41 1 9 16 lcdlmod
 |-  ( ph -> C e. LMod )
42 1 2 3 9 20 15 16 23 hdmapcl
 |-  ( ph -> ( S ` X ) e. ( Base ` C ) )
43 20 12 10 14 19 lmod0vs
 |-  ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) )
44 41 42 43 syl2anc
 |-  ( ph -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) )
45 40 44 sylan9eqr
 |-  ( ( ph /\ g e. { Q } ) -> ( g .xb ( S ` X ) ) = ( 0g ` C ) )
46 38 45 neeqtrrd
 |-  ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( g .xb ( S ` X ) ) )
47 46 neneqd
 |-  ( ( ph /\ g e. { Q } ) -> -. ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )
48 47 nrexdv
 |-  ( ph -> -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) )
49 reuun2
 |-  ( -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )
50 48 49 syl
 |-  ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )
51 12 13 14 lmod0cl
 |-  ( C e. LMod -> Q e. A )
52 difsnid
 |-  ( Q e. A -> ( ( A \ { Q } ) u. { Q } ) = A )
53 reueq1
 |-  ( ( ( A \ { Q } ) u. { Q } ) = A -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )
54 41 51 52 53 4syl
 |-  ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )
55 50 54 bitr3d
 |-  ( ph -> ( E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) )