| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem3.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmap14lem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmap14lem1.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmap14lem1.z |  |-  Z = ( 0g ` R ) | 
						
							| 9 |  | hdmap14lem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem2.e |  |-  .xb = ( .s ` C ) | 
						
							| 11 |  | hdmap14lem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 12 |  | hdmap14lem2.p |  |-  P = ( Scalar ` C ) | 
						
							| 13 |  | hdmap14lem2.a |  |-  A = ( Base ` P ) | 
						
							| 14 |  | hdmap14lem2.q |  |-  Q = ( 0g ` P ) | 
						
							| 15 |  | hdmap14lem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | hdmap14lem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hdmap14lem3.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | hdmap14lem1.f |  |-  ( ph -> F e. ( B \ { Z } ) ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 20 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 21 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 22 | 18 | eldifad |  |-  ( ph -> F e. B ) | 
						
							| 23 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 24 | 3 6 4 7 | lmodvscl |  |-  ( ( U e. LMod /\ F e. B /\ X e. V ) -> ( F .x. X ) e. V ) | 
						
							| 25 | 21 22 23 24 | syl3anc |  |-  ( ph -> ( F .x. X ) e. V ) | 
						
							| 26 |  | eldifsni |  |-  ( F e. ( B \ { Z } ) -> F =/= Z ) | 
						
							| 27 | 18 26 | syl |  |-  ( ph -> F =/= Z ) | 
						
							| 28 |  | eldifsni |  |-  ( X e. ( V \ { .0. } ) -> X =/= .0. ) | 
						
							| 29 | 17 28 | syl |  |-  ( ph -> X =/= .0. ) | 
						
							| 30 | 1 2 16 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 31 | 3 4 6 7 8 5 30 22 23 | lvecvsn0 |  |-  ( ph -> ( ( F .x. X ) =/= .0. <-> ( F =/= Z /\ X =/= .0. ) ) ) | 
						
							| 32 | 27 29 31 | mpbir2and |  |-  ( ph -> ( F .x. X ) =/= .0. ) | 
						
							| 33 |  | eldifsn |  |-  ( ( F .x. X ) e. ( V \ { .0. } ) <-> ( ( F .x. X ) e. V /\ ( F .x. X ) =/= .0. ) ) | 
						
							| 34 | 25 32 33 | sylanbrc |  |-  ( ph -> ( F .x. X ) e. ( V \ { .0. } ) ) | 
						
							| 35 | 1 2 3 5 9 19 20 15 16 34 | hdmapnzcl |  |-  ( ph -> ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) ) | 
						
							| 36 |  | eldifsni |  |-  ( ( S ` ( F .x. X ) ) e. ( ( Base ` C ) \ { ( 0g ` C ) } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( 0g ` C ) ) | 
						
							| 39 |  | elsni |  |-  ( g e. { Q } -> g = Q ) | 
						
							| 40 | 39 | oveq1d |  |-  ( g e. { Q } -> ( g .xb ( S ` X ) ) = ( Q .xb ( S ` X ) ) ) | 
						
							| 41 | 1 9 16 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 42 | 1 2 3 9 20 15 16 23 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` C ) ) | 
						
							| 43 | 20 12 10 14 19 | lmod0vs |  |-  ( ( C e. LMod /\ ( S ` X ) e. ( Base ` C ) ) -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 44 | 41 42 43 | syl2anc |  |-  ( ph -> ( Q .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 45 | 40 44 | sylan9eqr |  |-  ( ( ph /\ g e. { Q } ) -> ( g .xb ( S ` X ) ) = ( 0g ` C ) ) | 
						
							| 46 | 38 45 | neeqtrrd |  |-  ( ( ph /\ g e. { Q } ) -> ( S ` ( F .x. X ) ) =/= ( g .xb ( S ` X ) ) ) | 
						
							| 47 | 46 | neneqd |  |-  ( ( ph /\ g e. { Q } ) -> -. ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) | 
						
							| 48 | 47 | nrexdv |  |-  ( ph -> -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) | 
						
							| 49 |  | reuun2 |  |-  ( -. E. g e. { Q } ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 51 | 12 13 14 | lmod0cl |  |-  ( C e. LMod -> Q e. A ) | 
						
							| 52 |  | difsnid |  |-  ( Q e. A -> ( ( A \ { Q } ) u. { Q } ) = A ) | 
						
							| 53 |  | reueq1 |  |-  ( ( ( A \ { Q } ) u. { Q } ) = A -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 54 | 41 51 52 53 | 4syl |  |-  ( ph -> ( E! g e. ( ( A \ { Q } ) u. { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) | 
						
							| 55 | 50 54 | bitr3d |  |-  ( ph -> ( E! g e. ( A \ { Q } ) ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) <-> E! g e. A ( S ` ( F .x. X ) ) = ( g .xb ( S ` X ) ) ) ) |