Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Restricted uniqueness with difference, union, and intersection
reuun2
Next ⟩
reuss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
reuun2
Description:
Transfer uniqueness to a smaller or larger class.
(Contributed by
NM
, 21-Oct-2005)
Ref
Expression
Assertion
reuun2
⊢
¬
∃
x
∈
B
φ
→
∃!
x
∈
A
∪
B
φ
↔
∃!
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
df-rex
⊢
∃
x
∈
B
φ
↔
∃
x
x
∈
B
∧
φ
2
euor2
⊢
¬
∃
x
x
∈
B
∧
φ
→
∃!
x
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
↔
∃!
x
x
∈
A
∧
φ
3
1
2
sylnbi
⊢
¬
∃
x
∈
B
φ
→
∃!
x
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
↔
∃!
x
x
∈
A
∧
φ
4
df-reu
⊢
∃!
x
∈
A
∪
B
φ
↔
∃!
x
x
∈
A
∪
B
∧
φ
5
elun
⊢
x
∈
A
∪
B
↔
x
∈
A
∨
x
∈
B
6
5
anbi1i
⊢
x
∈
A
∪
B
∧
φ
↔
x
∈
A
∨
x
∈
B
∧
φ
7
andir
⊢
x
∈
A
∨
x
∈
B
∧
φ
↔
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
8
orcom
⊢
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
↔
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
9
7
8
bitri
⊢
x
∈
A
∨
x
∈
B
∧
φ
↔
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
10
6
9
bitri
⊢
x
∈
A
∪
B
∧
φ
↔
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
11
10
eubii
⊢
∃!
x
x
∈
A
∪
B
∧
φ
↔
∃!
x
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
12
4
11
bitri
⊢
∃!
x
∈
A
∪
B
φ
↔
∃!
x
x
∈
B
∧
φ
∨
x
∈
A
∧
φ
13
df-reu
⊢
∃!
x
∈
A
φ
↔
∃!
x
x
∈
A
∧
φ
14
3
12
13
3bitr4g
⊢
¬
∃
x
∈
B
φ
→
∃!
x
∈
A
∪
B
φ
↔
∃!
x
∈
A
φ