Metamath Proof Explorer


Theorem reuun2

Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005)

Ref Expression
Assertion reuun2 ¬ x B φ ∃! x A B φ ∃! x A φ

Proof

Step Hyp Ref Expression
1 df-rex x B φ x x B φ
2 euor2 ¬ x x B φ ∃! x x B φ x A φ ∃! x x A φ
3 1 2 sylnbi ¬ x B φ ∃! x x B φ x A φ ∃! x x A φ
4 df-reu ∃! x A B φ ∃! x x A B φ
5 elun x A B x A x B
6 5 anbi1i x A B φ x A x B φ
7 andir x A x B φ x A φ x B φ
8 orcom x A φ x B φ x B φ x A φ
9 7 8 bitri x A x B φ x B φ x A φ
10 6 9 bitri x A B φ x B φ x A φ
11 10 eubii ∃! x x A B φ ∃! x x B φ x A φ
12 4 11 bitri ∃! x A B φ ∃! x x B φ x A φ
13 df-reu ∃! x A φ ∃! x x A φ
14 3 12 13 3bitr4g ¬ x B φ ∃! x A B φ ∃! x A φ