Metamath Proof Explorer


Theorem reuun2

Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005)

Ref Expression
Assertion reuun2 ¬xBφ∃!xABφ∃!xAφ

Proof

Step Hyp Ref Expression
1 df-rex xBφxxBφ
2 euor2 ¬xxBφ∃!xxBφxAφ∃!xxAφ
3 1 2 sylnbi ¬xBφ∃!xxBφxAφ∃!xxAφ
4 df-reu ∃!xABφ∃!xxABφ
5 elun xABxAxB
6 5 anbi1i xABφxAxBφ
7 andir xAxBφxAφxBφ
8 orcom xAφxBφxBφxAφ
9 7 8 bitri xAxBφxBφxAφ
10 6 9 bitri xABφxBφxAφ
11 10 eubii ∃!xxABφ∃!xxBφxAφ
12 4 11 bitri ∃!xABφ∃!xxBφxAφ
13 df-reu ∃!xAφ∃!xxAφ
14 3 12 13 3bitr4g ¬xBφ∃!xABφ∃!xAφ