Metamath Proof Explorer


Theorem reuss2

Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion reuss2 ABxAφψxAφ∃!xBψ∃!xAφ

Proof

Step Hyp Ref Expression
1 df-rex xAφxxAφ
2 df-reu ∃!xBψ∃!xxBψ
3 1 2 anbi12i xAφ∃!xBψxxAφ∃!xxBψ
4 df-ral xAφψxxAφψ
5 ssel ABxAxB
6 pm3.2 xBψxBψ
7 6 imim2d xBφψφxBψ
8 5 7 syl6 ABxAφψφxBψ
9 8 a2d ABxAφψxAφxBψ
10 9 imp4a ABxAφψxAφxBψ
11 10 alimdv ABxxAφψxxAφxBψ
12 11 imp ABxxAφψxxAφxBψ
13 4 12 sylan2b ABxAφψxxAφxBψ
14 euimmo xxAφxBψ∃!xxBψ*xxAφ
15 13 14 syl ABxAφψ∃!xxBψ*xxAφ
16 df-eu ∃!xxAφxxAφ*xxAφ
17 16 simplbi2 xxAφ*xxAφ∃!xxAφ
18 15 17 syl9 ABxAφψxxAφ∃!xxBψ∃!xxAφ
19 18 imp32 ABxAφψxxAφ∃!xxBψ∃!xxAφ
20 df-reu ∃!xAφ∃!xxAφ
21 19 20 sylibr ABxAφψxxAφ∃!xxBψ∃!xAφ
22 3 21 sylan2b ABxAφψxAφ∃!xBψ∃!xAφ