Metamath Proof Explorer


Theorem reuss

Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reuss ABxAφ∃!xBφ∃!xAφ

Proof

Step Hyp Ref Expression
1 id φφ
2 1 rgenw xAφφ
3 reuss2 ABxAφφxAφ∃!xBφ∃!xAφ
4 2 3 mpanl2 ABxAφ∃!xBφ∃!xAφ
5 4 3impb ABxAφ∃!xBφ∃!xAφ