Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hdmap14lem4
Metamath Proof Explorer
Description: Simplify ( A \ { Q } ) in hdmap14lem3 to provide a slightly
simpler definition later. TODO: Use hdmap14lem4a if that one is
also used directly elsewhere. Otherwise, merge hdmap14lem4a into
this one. (Contributed by NM , 31-May-2015)
Ref
Expression
Hypotheses
hdmap14lem1.h
hdmap14lem1.u
hdmap14lem1.v
hdmap14lem1.t
hdmap14lem3.o
hdmap14lem1.r
hdmap14lem1.b
hdmap14lem1.z
hdmap14lem1.c
hdmap14lem2.e
hdmap14lem1.l
hdmap14lem2.p
hdmap14lem2.a
hdmap14lem2.q
hdmap14lem1.s
hdmap14lem1.k
hdmap14lem3.x
hdmap14lem1.f
Assertion
hdmap14lem4
Proof
Step
Hyp
Ref
Expression
1
hdmap14lem1.h
2
hdmap14lem1.u
3
hdmap14lem1.v
4
hdmap14lem1.t
5
hdmap14lem3.o
6
hdmap14lem1.r
7
hdmap14lem1.b
8
hdmap14lem1.z
9
hdmap14lem1.c
10
hdmap14lem2.e
11
hdmap14lem1.l
12
hdmap14lem2.p
13
hdmap14lem2.a
14
hdmap14lem2.q
15
hdmap14lem1.s
16
hdmap14lem1.k
17
hdmap14lem3.x
18
hdmap14lem1.f
19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
hdmap14lem3
20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
hdmap14lem4a
21
19 20
mpbid