| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem3.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmap14lem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmap14lem1.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | hdmap14lem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem2.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 11 |  | hdmap14lem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | hdmap14lem2.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem2.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem2.q | ⊢ 𝑄  =  ( 0g ‘ 𝑃 ) | 
						
							| 15 |  | hdmap14lem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hdmap14lem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hdmap14lem3.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | hdmap14lem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐵  ∖  { 𝑍 } ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmap14lem3 | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmap14lem4a | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  ( 𝐴  ∖  { 𝑄 } ) ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 21 | 19 20 | mpbid | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑋 ) ) ) |