Metamath Proof Explorer


Theorem hdmap14lem3

Description: Prior to part 14 in Baer p. 49, line 26. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h H=LHypK
hdmap14lem1.u U=DVecHKW
hdmap14lem1.v V=BaseU
hdmap14lem1.t ·˙=U
hdmap14lem3.o 0˙=0U
hdmap14lem1.r R=ScalarU
hdmap14lem1.b B=BaseR
hdmap14lem1.z Z=0R
hdmap14lem1.c C=LCDualKW
hdmap14lem2.e ˙=C
hdmap14lem1.l L=LSpanC
hdmap14lem2.p P=ScalarC
hdmap14lem2.a A=BaseP
hdmap14lem2.q Q=0P
hdmap14lem1.s S=HDMapKW
hdmap14lem1.k φKHLWH
hdmap14lem3.x φXV0˙
hdmap14lem1.f φFBZ
Assertion hdmap14lem3 φ∃!gAQSF·˙X=g˙SX

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H=LHypK
2 hdmap14lem1.u U=DVecHKW
3 hdmap14lem1.v V=BaseU
4 hdmap14lem1.t ·˙=U
5 hdmap14lem3.o 0˙=0U
6 hdmap14lem1.r R=ScalarU
7 hdmap14lem1.b B=BaseR
8 hdmap14lem1.z Z=0R
9 hdmap14lem1.c C=LCDualKW
10 hdmap14lem2.e ˙=C
11 hdmap14lem1.l L=LSpanC
12 hdmap14lem2.p P=ScalarC
13 hdmap14lem2.a A=BaseP
14 hdmap14lem2.q Q=0P
15 hdmap14lem1.s S=HDMapKW
16 hdmap14lem1.k φKHLWH
17 hdmap14lem3.x φXV0˙
18 hdmap14lem1.f φFBZ
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap14lem1 φLSX=LSF·˙X
20 19 eqcomd φLSF·˙X=LSX
21 eqid BaseC=BaseC
22 eqid 0C=0C
23 1 9 16 lcdlvec φCLVec
24 1 2 16 dvhlmod φULMod
25 18 eldifad φFB
26 17 eldifad φXV
27 3 6 4 7 lmodvscl ULModFBXVF·˙XV
28 24 25 26 27 syl3anc φF·˙XV
29 1 2 3 9 21 15 16 28 hdmapcl φSF·˙XBaseC
30 1 2 3 5 9 22 21 15 16 17 hdmapnzcl φSXBaseC0C
31 21 12 13 14 10 22 11 23 29 30 lspsneu φLSF·˙X=LSX∃!gAQSF·˙X=g˙SX
32 20 31 mpbid φ∃!gAQSF·˙X=g˙SX