Metamath Proof Explorer


Theorem hdmap14lem15

Description: Part of proof of part 14 in Baer p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem12.t · = ( ·𝑠𝑈 )
hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.e = ( ·𝑠𝐶 )
hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem12.f ( 𝜑𝐹𝐵 )
Assertion hdmap14lem15 ( 𝜑 → ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem12.t · = ( ·𝑠𝑈 )
5 hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
7 hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap14lem12.e = ( ·𝑠𝐶 )
9 hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 hdmap14lem12.f ( 𝜑𝐹𝐵 )
12 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
13 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 hdmap14lem14 ( 𝜑 → ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )
15 1 2 5 6 7 12 13 10 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 )
16 reueq1 ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 → ( ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ↔ ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
17 15 16 syl ( 𝜑 → ( ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ↔ ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
18 14 17 mpbid ( 𝜑 → ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )