Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem12.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem12.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem12.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem12.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem12.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem12.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem12.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem12.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap14lem12.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
hdmap14lem12.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
hdmap14lem14 |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) |
15 |
1 2 5 6 7 12 13 10
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 ) |
16 |
|
reueq1 |
⊢ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 → ( ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ∃! 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑔 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ∃! 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
18 |
14 17
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) |