| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem12.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem12.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem12.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem12.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem12.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmap14lem12.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap14lem12.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hdmap14lem12.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem12.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmap14lem12.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 12 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | hdmap14lem14 | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 15 | 1 2 5 6 7 12 13 10 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  𝐵 ) | 
						
							| 16 |  | reueq1 | ⊢ ( ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  𝐵  →  ( ∃! 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ∃! 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ∃! 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ∃! 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 14 17 | mpbid | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) |