Metamath Proof Explorer


Theorem hdmap14lem15

Description: Part of proof of part 14 in Baer p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h H = LHyp K
hdmap14lem12.u U = DVecH K W
hdmap14lem12.v V = Base U
hdmap14lem12.t · ˙ = U
hdmap14lem12.r R = Scalar U
hdmap14lem12.b B = Base R
hdmap14lem12.c C = LCDual K W
hdmap14lem12.e ˙ = C
hdmap14lem12.s S = HDMap K W
hdmap14lem12.k φ K HL W H
hdmap14lem12.f φ F B
Assertion hdmap14lem15 φ ∃! g B x V S F · ˙ x = g ˙ S x

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h H = LHyp K
2 hdmap14lem12.u U = DVecH K W
3 hdmap14lem12.v V = Base U
4 hdmap14lem12.t · ˙ = U
5 hdmap14lem12.r R = Scalar U
6 hdmap14lem12.b B = Base R
7 hdmap14lem12.c C = LCDual K W
8 hdmap14lem12.e ˙ = C
9 hdmap14lem12.s S = HDMap K W
10 hdmap14lem12.k φ K HL W H
11 hdmap14lem12.f φ F B
12 eqid Scalar C = Scalar C
13 eqid Base Scalar C = Base Scalar C
14 1 2 3 4 5 6 7 8 9 10 11 12 13 hdmap14lem14 φ ∃! g Base Scalar C x V S F · ˙ x = g ˙ S x
15 1 2 5 6 7 12 13 10 lcdsbase φ Base Scalar C = B
16 reueq1 Base Scalar C = B ∃! g Base Scalar C x V S F · ˙ x = g ˙ S x ∃! g B x V S F · ˙ x = g ˙ S x
17 15 16 syl φ ∃! g Base Scalar C x V S F · ˙ x = g ˙ S x ∃! g B x V S F · ˙ x = g ˙ S x
18 14 17 mpbid φ ∃! g B x V S F · ˙ x = g ˙ S x