Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem12.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem12.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem12.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem12.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem12.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem12.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem12.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem12.s |
|- S = ( ( HDMap ` K ) ` W ) |
10 |
|
hdmap14lem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
hdmap14lem12.f |
|- ( ph -> F e. B ) |
12 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
hdmap14lem14 |
|- ( ph -> E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |
15 |
1 2 5 6 7 12 13 10
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = B ) |
16 |
|
reueq1 |
|- ( ( Base ` ( Scalar ` C ) ) = B -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
17 |
15 16
|
syl |
|- ( ph -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
18 |
14 17
|
mpbid |
|- ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |