| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmap14lem12.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmap14lem12.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmap14lem12.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmap14lem12.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmap14lem12.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hdmap14lem12.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hdmap14lem12.e |  |-  .xb = ( .s ` C ) | 
						
							| 9 |  | hdmap14lem12.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hdmap14lem12.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | hdmap14lem12.f |  |-  ( ph -> F e. B ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | hdmap14lem14 |  |-  ( ph -> E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) | 
						
							| 15 | 1 2 5 6 7 12 13 10 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B ) | 
						
							| 16 |  | reueq1 |  |-  ( ( Base ` ( Scalar ` C ) ) = B -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) | 
						
							| 18 | 14 17 | mpbid |  |-  ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |