Metamath Proof Explorer


Theorem hdmap14lem15

Description: Part of proof of part 14 in Baer p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h
|- H = ( LHyp ` K )
hdmap14lem12.u
|- U = ( ( DVecH ` K ) ` W )
hdmap14lem12.v
|- V = ( Base ` U )
hdmap14lem12.t
|- .x. = ( .s ` U )
hdmap14lem12.r
|- R = ( Scalar ` U )
hdmap14lem12.b
|- B = ( Base ` R )
hdmap14lem12.c
|- C = ( ( LCDual ` K ) ` W )
hdmap14lem12.e
|- .xb = ( .s ` C )
hdmap14lem12.s
|- S = ( ( HDMap ` K ) ` W )
hdmap14lem12.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap14lem12.f
|- ( ph -> F e. B )
Assertion hdmap14lem15
|- ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h
 |-  H = ( LHyp ` K )
2 hdmap14lem12.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap14lem12.v
 |-  V = ( Base ` U )
4 hdmap14lem12.t
 |-  .x. = ( .s ` U )
5 hdmap14lem12.r
 |-  R = ( Scalar ` U )
6 hdmap14lem12.b
 |-  B = ( Base ` R )
7 hdmap14lem12.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap14lem12.e
 |-  .xb = ( .s ` C )
9 hdmap14lem12.s
 |-  S = ( ( HDMap ` K ) ` W )
10 hdmap14lem12.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 hdmap14lem12.f
 |-  ( ph -> F e. B )
12 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
13 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 hdmap14lem14
 |-  ( ph -> E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) )
15 1 2 5 6 7 12 13 10 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B )
16 reueq1
 |-  ( ( Base ` ( Scalar ` C ) ) = B -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) )
17 15 16 syl
 |-  ( ph -> ( E! g e. ( Base ` ( Scalar ` C ) ) A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) )
18 14 17 mpbid
 |-  ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) )