Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap14lem12.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap14lem12.v |
|- V = ( Base ` U ) |
4 |
|
hdmap14lem12.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmap14lem12.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmap14lem12.b |
|- B = ( Base ` R ) |
7 |
|
hdmap14lem12.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap14lem12.e |
|- .xb = ( .s ` C ) |
9 |
|
hdmap14lem12.s |
|- S = ( ( HDMap ` K ) ` W ) |
10 |
|
hdmap14lem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
hdmap14lem12.f |
|- ( ph -> F e. B ) |
12 |
|
hdmap14lem12.p |
|- P = ( Scalar ` C ) |
13 |
|
hdmap14lem12.a |
|- A = ( Base ` P ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
1 2 3 14 10
|
dvh1dim |
|- ( ph -> E. y e. V y =/= ( 0g ` U ) ) |
16 |
10
|
3ad2ant1 |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
3simpc |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> ( y e. V /\ y =/= ( 0g ` U ) ) ) |
18 |
|
eldifsn |
|- ( y e. ( V \ { ( 0g ` U ) } ) <-> ( y e. V /\ y =/= ( 0g ` U ) ) ) |
19 |
17 18
|
sylibr |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> y e. ( V \ { ( 0g ` U ) } ) ) |
20 |
11
|
3ad2ant1 |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> F e. B ) |
21 |
1 2 3 4 14 5 6 7 8 12 13 9 16 19 20
|
hdmap14lem7 |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> E! g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) ) |
22 |
|
simpl1 |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> ph ) |
23 |
22 10
|
syl |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> ( K e. HL /\ W e. H ) ) |
24 |
22 11
|
syl |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> F e. B ) |
25 |
19
|
adantr |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> y e. ( V \ { ( 0g ` U ) } ) ) |
26 |
|
simpr |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> g e. A ) |
27 |
1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26
|
hdmap14lem13 |
|- ( ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) /\ g e. A ) -> ( ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) <-> A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
28 |
27
|
reubidva |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> ( E! g e. A ( S ` ( F .x. y ) ) = ( g .xb ( S ` y ) ) <-> E! g e. A A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
29 |
21 28
|
mpbid |
|- ( ( ph /\ y e. V /\ y =/= ( 0g ` U ) ) -> E! g e. A A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |
30 |
29
|
rexlimdv3a |
|- ( ph -> ( E. y e. V y =/= ( 0g ` U ) -> E! g e. A A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
31 |
15 30
|
mpd |
|- ( ph -> E! g e. A A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |