Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap14lem12.h | |
|
hdmap14lem12.u | |
||
hdmap14lem12.v | |
||
hdmap14lem12.t | |
||
hdmap14lem12.r | |
||
hdmap14lem12.b | |
||
hdmap14lem12.c | |
||
hdmap14lem12.e | |
||
hdmap14lem12.s | |
||
hdmap14lem12.k | |
||
hdmap14lem12.f | |
||
hdmap14lem12.p | |
||
hdmap14lem12.a | |
||
hdmap14lem12.o | |
||
hdmap14lem12.x | |
||
hdmap14lem12.g | |
||
Assertion | hdmap14lem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | |
|
2 | hdmap14lem12.u | |
|
3 | hdmap14lem12.v | |
|
4 | hdmap14lem12.t | |
|
5 | hdmap14lem12.r | |
|
6 | hdmap14lem12.b | |
|
7 | hdmap14lem12.c | |
|
8 | hdmap14lem12.e | |
|
9 | hdmap14lem12.s | |
|
10 | hdmap14lem12.k | |
|
11 | hdmap14lem12.f | |
|
12 | hdmap14lem12.p | |
|
13 | hdmap14lem12.a | |
|
14 | hdmap14lem12.o | |
|
15 | hdmap14lem12.x | |
|
16 | hdmap14lem12.g | |
|
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | hdmap14lem12 | |
18 | velsn | |
|
19 | 1 7 10 | lcdlmod | |
20 | eqid | |
|
21 | 12 8 13 20 | lmodvs0 | |
22 | 19 16 21 | syl2anc | |
23 | 1 2 14 7 20 9 10 | hdmapval0 | |
24 | 23 | oveq2d | |
25 | 1 2 10 | dvhlmod | |
26 | 5 4 6 14 | lmodvs0 | |
27 | 25 11 26 | syl2anc | |
28 | 27 | fveq2d | |
29 | 28 23 | eqtrd | |
30 | 22 24 29 | 3eqtr4rd | |
31 | oveq2 | |
|
32 | 31 | fveq2d | |
33 | fveq2 | |
|
34 | 33 | oveq2d | |
35 | 32 34 | eqeq12d | |
36 | 30 35 | syl5ibrcom | |
37 | 18 36 | biimtrid | |
38 | 37 | ralrimiv | |
39 | 38 | biantrud | |
40 | ralunb | |
|
41 | 39 40 | bitr4di | |
42 | 3 14 | lmod0vcl | |
43 | difsnid | |
|
44 | 25 42 43 | 3syl | |
45 | 44 | raleqdv | |
46 | 17 41 45 | 3bitrd | |