Metamath Proof Explorer


Theorem hdmap14lem13

Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h H=LHypK
hdmap14lem12.u U=DVecHKW
hdmap14lem12.v V=BaseU
hdmap14lem12.t ·˙=U
hdmap14lem12.r R=ScalarU
hdmap14lem12.b B=BaseR
hdmap14lem12.c C=LCDualKW
hdmap14lem12.e ˙=C
hdmap14lem12.s S=HDMapKW
hdmap14lem12.k φKHLWH
hdmap14lem12.f φFB
hdmap14lem12.p P=ScalarC
hdmap14lem12.a A=BaseP
hdmap14lem12.o 0˙=0U
hdmap14lem12.x φXV0˙
hdmap14lem12.g φGA
Assertion hdmap14lem13 φSF·˙X=G˙SXyVSF·˙y=G˙Sy

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h H=LHypK
2 hdmap14lem12.u U=DVecHKW
3 hdmap14lem12.v V=BaseU
4 hdmap14lem12.t ·˙=U
5 hdmap14lem12.r R=ScalarU
6 hdmap14lem12.b B=BaseR
7 hdmap14lem12.c C=LCDualKW
8 hdmap14lem12.e ˙=C
9 hdmap14lem12.s S=HDMapKW
10 hdmap14lem12.k φKHLWH
11 hdmap14lem12.f φFB
12 hdmap14lem12.p P=ScalarC
13 hdmap14lem12.a A=BaseP
14 hdmap14lem12.o 0˙=0U
15 hdmap14lem12.x φXV0˙
16 hdmap14lem12.g φGA
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 hdmap14lem12 φSF·˙X=G˙SXyV0˙SF·˙y=G˙Sy
18 velsn y0˙y=0˙
19 1 7 10 lcdlmod φCLMod
20 eqid 0C=0C
21 12 8 13 20 lmodvs0 CLModGAG˙0C=0C
22 19 16 21 syl2anc φG˙0C=0C
23 1 2 14 7 20 9 10 hdmapval0 φS0˙=0C
24 23 oveq2d φG˙S0˙=G˙0C
25 1 2 10 dvhlmod φULMod
26 5 4 6 14 lmodvs0 ULModFBF·˙0˙=0˙
27 25 11 26 syl2anc φF·˙0˙=0˙
28 27 fveq2d φSF·˙0˙=S0˙
29 28 23 eqtrd φSF·˙0˙=0C
30 22 24 29 3eqtr4rd φSF·˙0˙=G˙S0˙
31 oveq2 y=0˙F·˙y=F·˙0˙
32 31 fveq2d y=0˙SF·˙y=SF·˙0˙
33 fveq2 y=0˙Sy=S0˙
34 33 oveq2d y=0˙G˙Sy=G˙S0˙
35 32 34 eqeq12d y=0˙SF·˙y=G˙SySF·˙0˙=G˙S0˙
36 30 35 syl5ibrcom φy=0˙SF·˙y=G˙Sy
37 18 36 biimtrid φy0˙SF·˙y=G˙Sy
38 37 ralrimiv φy0˙SF·˙y=G˙Sy
39 38 biantrud φyV0˙SF·˙y=G˙SyyV0˙SF·˙y=G˙Syy0˙SF·˙y=G˙Sy
40 ralunb yV0˙0˙SF·˙y=G˙SyyV0˙SF·˙y=G˙Syy0˙SF·˙y=G˙Sy
41 39 40 bitr4di φyV0˙SF·˙y=G˙SyyV0˙0˙SF·˙y=G˙Sy
42 3 14 lmod0vcl ULMod0˙V
43 difsnid 0˙VV0˙0˙=V
44 25 42 43 3syl φV0˙0˙=V
45 44 raleqdv φyV0˙0˙SF·˙y=G˙SyyVSF·˙y=G˙Sy
46 17 41 45 3bitrd φSF·˙X=G˙SXyVSF·˙y=G˙Sy