| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap14lem12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap14lem12.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap14lem12.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap14lem12.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmap14lem12.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmap14lem12.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmap14lem12.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap14lem12.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hdmap14lem12.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmap14lem12.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmap14lem12.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 12 |  | hdmap14lem12.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 13 |  | hdmap14lem12.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | hdmap14lem12.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 15 |  | hdmap14lem12.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 16 |  | hdmap14lem12.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐴 ) | 
						
							| 17 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 18 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝑦  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 20 | 19 | eldifad | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 21 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 | hdmap14lem2a | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  ∃ 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 23 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 25 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 26 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 27 |  | simp11 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝜑 ) | 
						
							| 28 | 27 10 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 29 | 27 15 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 30 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝑦  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 31 | 27 11 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝐹  ∈  𝐵 ) | 
						
							| 32 | 27 16 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝐺  ∈  𝐴 ) | 
						
							| 33 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝑔  ∈  𝐴 ) | 
						
							| 34 |  | simp12 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 35 | 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 | hdmap14lem11 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  𝐺  =  𝑔 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 37 | 23 36 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  ∧  𝑔  ∈  𝐴  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 38 | 37 | rexlimdv3a | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  ( ∃ 𝑔  ∈  𝐴 ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑦 ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 22 38 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ∧  𝑦  ∈  ( 𝑉  ∖  {  0  } ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 40 | 39 | 3expia | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  ( 𝑦  ∈  ( 𝑉  ∖  {  0  } )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 40 | ralrimiv | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) )  →  ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹  ·  𝑦 )  =  ( 𝐹  ·  𝑋 ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( 𝑦  =  𝑋  →  ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑆 ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑋 ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑦  =  𝑋  →  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 46 | 43 45 | eqeq12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 47 | 46 | rspcv | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  →  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 48 | 15 47 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 50 | 41 49 | impbida | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑋 ) )  ↔  ∀ 𝑦  ∈  ( 𝑉  ∖  {  0  } ) ( 𝑆 ‘ ( 𝐹  ·  𝑦 ) )  =  ( 𝐺  ∙  ( 𝑆 ‘ 𝑦 ) ) ) ) |