Metamath Proof Explorer


Theorem hdmap14lem12

Description: Lemma for proof of part 14 in Baer p. 50. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem12.t · = ( ·𝑠𝑈 )
hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.e = ( ·𝑠𝐶 )
hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem12.f ( 𝜑𝐹𝐵 )
hdmap14lem12.p 𝑃 = ( Scalar ‘ 𝐶 )
hdmap14lem12.a 𝐴 = ( Base ‘ 𝑃 )
hdmap14lem12.o 0 = ( 0g𝑈 )
hdmap14lem12.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap14lem12.g ( 𝜑𝐺𝐴 )
Assertion hdmap14lem12 ( 𝜑 → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem12.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem12.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem12.t · = ( ·𝑠𝑈 )
5 hdmap14lem12.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmap14lem12.b 𝐵 = ( Base ‘ 𝑅 )
7 hdmap14lem12.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap14lem12.e = ( ·𝑠𝐶 )
9 hdmap14lem12.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
10 hdmap14lem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 hdmap14lem12.f ( 𝜑𝐹𝐵 )
12 hdmap14lem12.p 𝑃 = ( Scalar ‘ 𝐶 )
13 hdmap14lem12.a 𝐴 = ( Base ‘ 𝑃 )
14 hdmap14lem12.o 0 = ( 0g𝑈 )
15 hdmap14lem12.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
16 hdmap14lem12.g ( 𝜑𝐺𝐴 )
17 eqid ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 )
18 10 3ad2ant1 ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp3 ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑦 ∈ ( 𝑉 ∖ { 0 } ) )
20 19 eldifad ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑦𝑉 )
21 11 3ad2ant1 ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝐹𝐵 )
22 1 2 3 4 5 6 7 8 17 12 13 9 18 20 21 hdmap14lem2a ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) )
23 simp3 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) )
24 eqid ( +g𝑈 ) = ( +g𝑈 )
25 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
26 eqid ( +g𝐶 ) = ( +g𝐶 )
27 simp11 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝜑 )
28 27 10 syl ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
29 27 15 syl ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
30 simp13 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝑦 ∈ ( 𝑉 ∖ { 0 } ) )
31 27 11 syl ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝐹𝐵 )
32 27 16 syl ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝐺𝐴 )
33 simp2 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝑔𝐴 )
34 simp12 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
35 1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23 hdmap14lem11 ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → 𝐺 = 𝑔 )
36 35 oveq1d ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → ( 𝐺 ( 𝑆𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) )
37 23 36 eqtr4d ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) )
38 37 rexlimdv3a ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ∃ 𝑔𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ( 𝑆𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ) )
39 22 38 mpd ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) )
40 39 3expia ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ) → ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ) )
41 40 ralrimiv ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ) → ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) )
42 oveq2 ( 𝑦 = 𝑋 → ( 𝐹 · 𝑦 ) = ( 𝐹 · 𝑋 ) )
43 42 fveq2d ( 𝑦 = 𝑋 → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) )
44 fveq2 ( 𝑦 = 𝑋 → ( 𝑆𝑦 ) = ( 𝑆𝑋 ) )
45 44 oveq2d ( 𝑦 = 𝑋 → ( 𝐺 ( 𝑆𝑦 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
46 43 45 eqeq12d ( 𝑦 = 𝑋 → ( ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ) )
47 46 rspcv ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ) )
48 15 47 syl ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ) )
49 48 imp ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) )
50 41 49 impbida ( 𝜑 → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ( 𝑆𝑋 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ( 𝑆𝑦 ) ) ) )