Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem12.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem12.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem12.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem12.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem12.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem12.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem12.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem12.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmap14lem12.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
hdmap14lem12.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
12 |
|
hdmap14lem12.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
13 |
|
hdmap14lem12.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
14 |
|
hdmap14lem12.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
15 |
|
hdmap14lem12.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
hdmap14lem12.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
17 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
18 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
19
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑦 ∈ 𝑉 ) |
21 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝐹 ∈ 𝐵 ) |
22 |
1 2 3 4 5 6 7 8 17 12 13 9 18 20 21
|
hdmap14lem2a |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
23 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
25 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
27 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝜑 ) |
28 |
27 10
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
29 |
27 15
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
30 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) |
31 |
27 11
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝐹 ∈ 𝐵 ) |
32 |
27 16
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝐺 ∈ 𝐴 ) |
33 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝑔 ∈ 𝐴 ) |
34 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
35 |
1 2 3 24 4 14 25 5 6 7 26 8 12 13 9 28 29 30 31 32 33 34 23
|
hdmap14lem11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → 𝐺 = 𝑔 ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
37 |
23 36
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) ∧ 𝑔 ∈ 𝐴 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
38 |
37
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
39 |
22 38
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
40 |
39
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) → ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |
41 |
40
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) → ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 · 𝑦 ) = ( 𝐹 · 𝑋 ) ) |
43 |
42
|
fveq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ) |
44 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑋 ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
46 |
43 45
|
eqeq12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
47 |
46
|
rspcv |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
48 |
15 47
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
49 |
48
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
50 |
41 49
|
impbida |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑆 ‘ ( 𝐹 · 𝑦 ) ) = ( 𝐺 ∙ ( 𝑆 ‘ 𝑦 ) ) ) ) |