Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem1a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem1a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem1a.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem1a.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem1a.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem1a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem2a.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem1a.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
10 |
|
hdmap14lem2a.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
11 |
|
hdmap14lem2a.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
12 |
|
hdmap14lem1a.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap14lem1a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
hdmap14lem3a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
|
hdmap14lem1a.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
16 |
|
fvoveq1 |
⊢ ( 𝐹 = ( 0g ‘ 𝑅 ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝐹 = ( 0g ‘ 𝑅 ) → ( ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝐹 = ( 0g ‘ 𝑅 ) → ( ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
19 |
|
difss |
⊢ ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ⊆ 𝐴 |
20 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝑋 ∈ 𝑉 ) |
22 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ≠ ( 0g ‘ 𝑅 ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 20 21 22 23 24
|
hdmap14lem1a |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) ) |
26 |
25
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
29 |
1 7 13
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
30 |
1 2 13
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
31 |
3 5 4 6
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
32 |
30 15 14 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
33 |
1 2 3 7 27 12 13 32
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ∈ ( Base ‘ 𝐶 ) ) |
34 |
1 2 3 7 27 12 13 14
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) |
35 |
27 10 11 28 8 9 29 33 34
|
lspsneq |
⊢ ( 𝜑 → ( ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ↔ ∃ 𝑔 ∈ ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ↔ ∃ 𝑔 ∈ ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
37 |
26 36
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑔 ∈ ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
38 |
|
ssrexv |
⊢ ( ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ⊆ 𝐴 → ( ∃ 𝑔 ∈ ( 𝐴 ∖ { ( 0g ‘ 𝑃 ) } ) ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
39 |
19 37 38
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
40 |
1 7 13
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
41 |
10 11 28
|
lmod0cl |
⊢ ( 𝐶 ∈ LMod → ( 0g ‘ 𝑃 ) ∈ 𝐴 ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝐴 ) |
43 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
45 |
1 2 43 7 44 12 13
|
hdmapval0 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝐶 ) ) |
46 |
3 5 4 23 43
|
lmod0vs |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝑅 ) · 𝑋 ) = ( 0g ‘ 𝑈 ) ) |
47 |
30 14 46
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) · 𝑋 ) = ( 0g ‘ 𝑈 ) ) |
48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) |
49 |
27 10 8 28 44
|
lmod0vs |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 0g ‘ 𝑃 ) ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 0g ‘ 𝐶 ) ) |
50 |
40 34 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ∙ ( 𝑆 ‘ 𝑋 ) ) = ( 0g ‘ 𝐶 ) ) |
51 |
45 48 50
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( ( 0g ‘ 𝑃 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
52 |
|
oveq1 |
⊢ ( 𝑔 = ( 0g ‘ 𝑃 ) → ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) = ( ( 0g ‘ 𝑃 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
53 |
52
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( ( 0g ‘ 𝑃 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
54 |
42 51 53
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
55 |
18 39 54
|
pm2.61ne |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐴 ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑋 ) ) ) |