Metamath Proof Explorer


Theorem hdmap14lem1a

Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1a.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap14lem1a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem1a.v 𝑉 = ( Base ‘ 𝑈 )
hdmap14lem1a.t · = ( ·𝑠𝑈 )
hdmap14lem1a.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmap14lem1a.b 𝐵 = ( Base ‘ 𝑅 )
hdmap14lem1a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem2a.e = ( ·𝑠𝐶 )
hdmap14lem1a.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap14lem2a.p 𝑃 = ( Scalar ‘ 𝐶 )
hdmap14lem2a.a 𝐴 = ( Base ‘ 𝑃 )
hdmap14lem1a.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap14lem1a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap14lem3a.x ( 𝜑𝑋𝑉 )
hdmap14lem1a.f ( 𝜑𝐹𝐵 )
hdmap14lem1a.z 0 = ( 0g𝑅 )
hdmap14lem1a.fn ( 𝜑𝐹0 )
Assertion hdmap14lem1a ( 𝜑 → ( 𝐿 ‘ { ( 𝑆𝑋 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmap14lem1a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap14lem1a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap14lem1a.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap14lem1a.t · = ( ·𝑠𝑈 )
5 hdmap14lem1a.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmap14lem1a.b 𝐵 = ( Base ‘ 𝑅 )
7 hdmap14lem1a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap14lem2a.e = ( ·𝑠𝐶 )
9 hdmap14lem1a.l 𝐿 = ( LSpan ‘ 𝐶 )
10 hdmap14lem2a.p 𝑃 = ( Scalar ‘ 𝐶 )
11 hdmap14lem2a.a 𝐴 = ( Base ‘ 𝑃 )
12 hdmap14lem1a.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
13 hdmap14lem1a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 hdmap14lem3a.x ( 𝜑𝑋𝑉 )
15 hdmap14lem1a.f ( 𝜑𝐹𝐵 )
16 hdmap14lem1a.z 0 = ( 0g𝑅 )
17 hdmap14lem1a.fn ( 𝜑𝐹0 )
18 1 2 13 dvhlvec ( 𝜑𝑈 ∈ LVec )
19 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
20 3 5 4 6 16 19 lspsnvs ( ( 𝑈 ∈ LVec ∧ ( 𝐹𝐵𝐹0 ) ∧ 𝑋𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )
21 18 15 17 14 20 syl121anc ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )
22 21 fveq2d ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) )
23 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
24 1 2 13 dvhlmod ( 𝜑𝑈 ∈ LMod )
25 3 5 4 6 lmodvscl ( ( 𝑈 ∈ LMod ∧ 𝐹𝐵𝑋𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 )
26 24 15 14 25 syl3anc ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 )
27 1 2 3 19 7 9 23 12 13 26 hdmap10 ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) )
28 1 2 3 19 7 9 23 12 13 14 hdmap10 ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑋 ) } ) )
29 22 27 28 3eqtr3rd ( 𝜑 → ( 𝐿 ‘ { ( 𝑆𝑋 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) )