Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap14lem1a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap14lem1a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap14lem1a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap14lem1a.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmap14lem1a.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmap14lem1a.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmap14lem1a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap14lem2a.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hdmap14lem1a.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
10 |
|
hdmap14lem2a.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
11 |
|
hdmap14lem2a.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
12 |
|
hdmap14lem1a.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap14lem1a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
hdmap14lem3a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
|
hdmap14lem1a.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
16 |
|
hdmap14lem1a.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
17 |
|
hdmap14lem1a.fn |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
18 |
1 2 13
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
19 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
20 |
3 5 4 6 16 19
|
lspsnvs |
⊢ ( ( 𝑈 ∈ LVec ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
21 |
18 15 17 14 20
|
syl121anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) ) = ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) |
23 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
1 2 13
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
25 |
3 5 4 6
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
26 |
24 15 14 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝑋 ) ∈ 𝑉 ) |
27 |
1 2 3 19 7 9 23 12 13 26
|
hdmap10 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { ( 𝐹 · 𝑋 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) ) |
28 |
1 2 3 19 7 9 23 12 13 14
|
hdmap10 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
29 |
22 27 28
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑋 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) } ) ) |