Metamath Proof Explorer


Theorem hdmapf1oN

Description: Part 12 in Baer p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd , this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapf1o.h H = LHyp K
hdmapf1o.u U = DVecH K W
hdmapf1o.v V = Base U
hdmapf1o.c C = LCDual K W
hdmapf1o.d D = Base C
hdmapf1o.s S = HDMap K W
hdmapf1o.k φ K HL W H
Assertion hdmapf1oN φ S : V 1-1 onto D

Proof

Step Hyp Ref Expression
1 hdmapf1o.h H = LHyp K
2 hdmapf1o.u U = DVecH K W
3 hdmapf1o.v V = Base U
4 hdmapf1o.c C = LCDual K W
5 hdmapf1o.d D = Base C
6 hdmapf1o.s S = HDMap K W
7 hdmapf1o.k φ K HL W H
8 1 2 3 6 7 hdmapfnN φ S Fn V
9 1 4 5 6 7 hdmaprnN φ ran S = D
10 7 adantr φ x V y V K HL W H
11 simprl φ x V y V x V
12 simprr φ x V y V y V
13 1 2 3 6 10 11 12 hdmap11 φ x V y V S x = S y x = y
14 13 biimpd φ x V y V S x = S y x = y
15 14 ralrimivva φ x V y V S x = S y x = y
16 dff1o6 S : V 1-1 onto D S Fn V ran S = D x V y V S x = S y x = y
17 8 9 15 16 syl3anbrc φ S : V 1-1 onto D