| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaprn.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 3 |
|
hdmaprn.d |
|- D = ( Base ` C ) |
| 4 |
|
hdmaprn.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 5 |
|
hdmaprn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
| 8 |
1 6 7 4 5
|
hdmapfnN |
|- ( ph -> S Fn ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 11 |
1 6 7 2 3 4 9 10
|
hdmapcl |
|- ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( S ` s ) e. D ) |
| 12 |
11
|
ralrimiva |
|- ( ph -> A. s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ( S ` s ) e. D ) |
| 13 |
|
fnfvrnss |
|- ( ( S Fn ( Base ` ( ( DVecH ` K ) ` W ) ) /\ A. s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ( S ` s ) e. D ) -> ran S C_ D ) |
| 14 |
8 12 13
|
syl2anc |
|- ( ph -> ran S C_ D ) |
| 15 |
|
eqid |
|- ( LSpan ` ( ( DVecH ` K ) ` W ) ) = ( LSpan ` ( ( DVecH ` K ) ` W ) ) |
| 16 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 17 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
| 18 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 19 |
5
|
adantr |
|- ( ( ph /\ s e. D ) -> ( K e. HL /\ W e. H ) ) |
| 20 |
|
simpr |
|- ( ( ph /\ s e. D ) -> s e. D ) |
| 21 |
1 6 7 15 2 3 16 17 18 4 19 20
|
hdmaprnlem17N |
|- ( ( ph /\ s e. D ) -> s e. ran S ) |
| 22 |
14 21
|
eqelssd |
|- ( ph -> ran S = D ) |