| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprn.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 3 |  | hdmaprn.d |  |-  D = ( Base ` C ) | 
						
							| 4 |  | hdmaprn.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmaprn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | eqid |  |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 8 | 1 6 7 4 5 | hdmapfnN |  |-  ( ph -> S Fn ( Base ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 9 | 5 | adantr |  |-  ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 11 | 1 6 7 2 3 4 9 10 | hdmapcl |  |-  ( ( ph /\ s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( S ` s ) e. D ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ph -> A. s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ( S ` s ) e. D ) | 
						
							| 13 |  | fnfvrnss |  |-  ( ( S Fn ( Base ` ( ( DVecH ` K ) ` W ) ) /\ A. s e. ( Base ` ( ( DVecH ` K ) ` W ) ) ( S ` s ) e. D ) -> ran S C_ D ) | 
						
							| 14 | 8 12 13 | syl2anc |  |-  ( ph -> ran S C_ D ) | 
						
							| 15 |  | eqid |  |-  ( LSpan ` ( ( DVecH ` K ) ` W ) ) = ( LSpan ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 17 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 18 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 19 | 5 | adantr |  |-  ( ( ph /\ s e. D ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ s e. D ) -> s e. D ) | 
						
							| 21 | 1 6 7 15 2 3 16 17 18 4 19 20 | hdmaprnlem17N |  |-  ( ( ph /\ s e. D ) -> s e. ran S ) | 
						
							| 22 | 14 21 | eqelssd |  |-  ( ph -> ran S = D ) |