Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem15.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem15.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem15.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem15.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem15.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem15.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
7 |
|
hdmaprnlem15.q |
⊢ 0 = ( 0g ‘ 𝐶 ) |
8 |
|
hdmaprnlem15.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
9 |
|
hdmaprnlem15.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmaprnlem15.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmaprnlem15.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmaprnlem16.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ) |
13 |
1 2 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
16 |
1 5 11
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
17 |
6 8 7 15 16 12
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
18 |
1 9 2 14 5 15 11 17
|
mapdcnvatN |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
19 |
3 4 14
|
islsati |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ∃ 𝑣 ∈ 𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) |
20 |
13 18 19
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
23 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑠 ∈ 𝐷 ) |
25 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
26 |
6 25 8
|
lspsncl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ) → ( 𝐿 ‘ { 𝑠 } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
27 |
16 24 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
28 |
1 9 5 25 11
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) ) |
29 |
27 28
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ∈ ran 𝑀 ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝐿 ‘ { 𝑠 } ) ∈ ran 𝑀 ) |
31 |
1 9 23 30
|
mapdcnvid2 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
32 |
22 31
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
33 |
32
|
ex |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) ) |
34 |
33
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( 𝑁 ‘ { 𝑣 } ) → ∃ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) ) |
35 |
20 34
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
36 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
37 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ) |
38 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) → 𝑣 ∈ 𝑉 ) |
39 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 36 37 38 39
|
hdmaprnlem15N |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) → 𝑠 ∈ ran 𝑆 ) |
41 |
40
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) → 𝑠 ∈ ran 𝑆 ) ) |
42 |
35 41
|
mpd |
⊢ ( 𝜑 → 𝑠 ∈ ran 𝑆 ) |