| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem15.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem15.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem15.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem15.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem15.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem15.q | ⊢  0   =  ( 0g ‘ 𝐶 ) | 
						
							| 8 |  | hdmaprnlem15.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 9 |  | hdmaprnlem15.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmaprnlem15.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmaprnlem15.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmaprnlem16.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  {  0  } ) ) | 
						
							| 13 | 1 2 11 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( LSAtoms ‘ 𝐶 )  =  ( LSAtoms ‘ 𝐶 ) | 
						
							| 16 | 1 5 11 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 17 | 6 8 7 15 16 12 | lsatlspsn | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ( LSAtoms ‘ 𝐶 ) ) | 
						
							| 18 | 1 9 2 14 5 15 11 17 | mapdcnvatN | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  ∈  ( LSAtoms ‘ 𝑈 ) ) | 
						
							| 19 | 3 4 14 | islsati | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  ∈  ( LSAtoms ‘ 𝑈 ) )  →  ∃ 𝑣  ∈  𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 20 | 13 18 19 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) )  =  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 23 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 24 | 12 | eldifad | ⊢ ( 𝜑  →  𝑠  ∈  𝐷 ) | 
						
							| 25 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 26 | 6 25 8 | lspsncl | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑠  ∈  𝐷 )  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 27 | 16 24 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 28 | 1 9 5 25 11 | mapdrn2 | ⊢ ( 𝜑  →  ran  𝑀  =  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 29 | 27 28 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ran  𝑀 ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ran  𝑀 ) | 
						
							| 31 | 1 9 23 30 | mapdcnvid2 | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 32 | 22 31 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) ) | 
						
							| 34 | 33 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝑉 ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( 𝑁 ‘ { 𝑣 } )  →  ∃ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) ) | 
						
							| 35 | 20 34 | mpd | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 36 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 37 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) )  →  𝑠  ∈  ( 𝐷  ∖  {  0  } ) ) | 
						
							| 38 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 39 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 36 37 38 39 | hdmaprnlem15N | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) )  →  𝑠  ∈  ran  𝑆 ) | 
						
							| 41 | 40 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } )  →  𝑠  ∈  ran  𝑆 ) ) | 
						
							| 42 | 35 41 | mpd | ⊢ ( 𝜑  →  𝑠  ∈  ran  𝑆 ) |