Metamath Proof Explorer


Theorem hdmaprnlem16N

Description: Lemma for hdmaprnN . Eliminate v . (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h H=LHypK
hdmaprnlem15.u U=DVecHKW
hdmaprnlem15.v V=BaseU
hdmaprnlem15.n N=LSpanU
hdmaprnlem15.c C=LCDualKW
hdmaprnlem15.d D=BaseC
hdmaprnlem15.q 0˙=0C
hdmaprnlem15.l L=LSpanC
hdmaprnlem15.m M=mapdKW
hdmaprnlem15.s S=HDMapKW
hdmaprnlem15.k φKHLWH
hdmaprnlem16.se φsD0˙
Assertion hdmaprnlem16N φsranS

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h H=LHypK
2 hdmaprnlem15.u U=DVecHKW
3 hdmaprnlem15.v V=BaseU
4 hdmaprnlem15.n N=LSpanU
5 hdmaprnlem15.c C=LCDualKW
6 hdmaprnlem15.d D=BaseC
7 hdmaprnlem15.q 0˙=0C
8 hdmaprnlem15.l L=LSpanC
9 hdmaprnlem15.m M=mapdKW
10 hdmaprnlem15.s S=HDMapKW
11 hdmaprnlem15.k φKHLWH
12 hdmaprnlem16.se φsD0˙
13 1 2 11 dvhlmod φULMod
14 eqid LSAtomsU=LSAtomsU
15 eqid LSAtomsC=LSAtomsC
16 1 5 11 lcdlmod φCLMod
17 6 8 7 15 16 12 lsatlspsn φLsLSAtomsC
18 1 9 2 14 5 15 11 17 mapdcnvatN φM-1LsLSAtomsU
19 3 4 14 islsati ULModM-1LsLSAtomsUvVM-1Ls=Nv
20 13 18 19 syl2anc φvVM-1Ls=Nv
21 simpr φvVM-1Ls=NvM-1Ls=Nv
22 21 fveq2d φvVM-1Ls=NvMM-1Ls=MNv
23 11 ad2antrr φvVM-1Ls=NvKHLWH
24 12 eldifad φsD
25 eqid LSubSpC=LSubSpC
26 6 25 8 lspsncl CLModsDLsLSubSpC
27 16 24 26 syl2anc φLsLSubSpC
28 1 9 5 25 11 mapdrn2 φranM=LSubSpC
29 27 28 eleqtrrd φLsranM
30 29 ad2antrr φvVM-1Ls=NvLsranM
31 1 9 23 30 mapdcnvid2 φvVM-1Ls=NvMM-1Ls=Ls
32 22 31 eqtr3d φvVM-1Ls=NvMNv=Ls
33 32 ex φvVM-1Ls=NvMNv=Ls
34 33 reximdva φvVM-1Ls=NvvVMNv=Ls
35 20 34 mpd φvVMNv=Ls
36 11 3ad2ant1 φvVMNv=LsKHLWH
37 12 3ad2ant1 φvVMNv=LssD0˙
38 simp2 φvVMNv=LsvV
39 simp3 φvVMNv=LsMNv=Ls
40 1 2 3 4 5 6 7 8 9 10 36 37 38 39 hdmaprnlem15N φvVMNv=LssranS
41 40 rexlimdv3a φvVMNv=LssranS
42 35 41 mpd φsranS