Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem15.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem15.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem15.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem15.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem15.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem15.d |
|- D = ( Base ` C ) |
7 |
|
hdmaprnlem15.q |
|- .0. = ( 0g ` C ) |
8 |
|
hdmaprnlem15.l |
|- L = ( LSpan ` C ) |
9 |
|
hdmaprnlem15.m |
|- M = ( ( mapd ` K ) ` W ) |
10 |
|
hdmaprnlem15.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmaprnlem15.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmaprnlem16.se |
|- ( ph -> s e. ( D \ { .0. } ) ) |
13 |
1 2 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
14 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
15 |
|
eqid |
|- ( LSAtoms ` C ) = ( LSAtoms ` C ) |
16 |
1 5 11
|
lcdlmod |
|- ( ph -> C e. LMod ) |
17 |
6 8 7 15 16 12
|
lsatlspsn |
|- ( ph -> ( L ` { s } ) e. ( LSAtoms ` C ) ) |
18 |
1 9 2 14 5 15 11 17
|
mapdcnvatN |
|- ( ph -> ( `' M ` ( L ` { s } ) ) e. ( LSAtoms ` U ) ) |
19 |
3 4 14
|
islsati |
|- ( ( U e. LMod /\ ( `' M ` ( L ` { s } ) ) e. ( LSAtoms ` U ) ) -> E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) |
20 |
13 18 19
|
syl2anc |
|- ( ph -> E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) |
21 |
|
simpr |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) |
22 |
21
|
fveq2d |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( M ` ( N ` { v } ) ) ) |
23 |
11
|
ad2antrr |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
12
|
eldifad |
|- ( ph -> s e. D ) |
25 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
26 |
6 25 8
|
lspsncl |
|- ( ( C e. LMod /\ s e. D ) -> ( L ` { s } ) e. ( LSubSp ` C ) ) |
27 |
16 24 26
|
syl2anc |
|- ( ph -> ( L ` { s } ) e. ( LSubSp ` C ) ) |
28 |
1 9 5 25 11
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
29 |
27 28
|
eleqtrrd |
|- ( ph -> ( L ` { s } ) e. ran M ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( L ` { s } ) e. ran M ) |
31 |
1 9 23 30
|
mapdcnvid2 |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( L ` { s } ) ) |
32 |
22 31
|
eqtr3d |
|- ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
33 |
32
|
ex |
|- ( ( ph /\ v e. V ) -> ( ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) ) |
34 |
33
|
reximdva |
|- ( ph -> ( E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) -> E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) ) |
35 |
20 34
|
mpd |
|- ( ph -> E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
36 |
11
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> ( K e. HL /\ W e. H ) ) |
37 |
12
|
3ad2ant1 |
|- ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> s e. ( D \ { .0. } ) ) |
38 |
|
simp2 |
|- ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> v e. V ) |
39 |
|
simp3 |
|- ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 36 37 38 39
|
hdmaprnlem15N |
|- ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> s e. ran S ) |
41 |
40
|
rexlimdv3a |
|- ( ph -> ( E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) -> s e. ran S ) ) |
42 |
35 41
|
mpd |
|- ( ph -> s e. ran S ) |