| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem15.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem15.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem15.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem15.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem15.d |  |-  D = ( Base ` C ) | 
						
							| 7 |  | hdmaprnlem15.q |  |-  .0. = ( 0g ` C ) | 
						
							| 8 |  | hdmaprnlem15.l |  |-  L = ( LSpan ` C ) | 
						
							| 9 |  | hdmaprnlem15.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 10 |  | hdmaprnlem15.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmaprnlem15.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmaprnlem16.se |  |-  ( ph -> s e. ( D \ { .0. } ) ) | 
						
							| 13 | 1 2 11 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 15 |  | eqid |  |-  ( LSAtoms ` C ) = ( LSAtoms ` C ) | 
						
							| 16 | 1 5 11 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 17 | 6 8 7 15 16 12 | lsatlspsn |  |-  ( ph -> ( L ` { s } ) e. ( LSAtoms ` C ) ) | 
						
							| 18 | 1 9 2 14 5 15 11 17 | mapdcnvatN |  |-  ( ph -> ( `' M ` ( L ` { s } ) ) e. ( LSAtoms ` U ) ) | 
						
							| 19 | 3 4 14 | islsati |  |-  ( ( U e. LMod /\ ( `' M ` ( L ` { s } ) ) e. ( LSAtoms ` U ) ) -> E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) | 
						
							| 20 | 13 18 19 | syl2anc |  |-  ( ph -> E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( M ` ( N ` { v } ) ) ) | 
						
							| 23 | 11 | ad2antrr |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 24 | 12 | eldifad |  |-  ( ph -> s e. D ) | 
						
							| 25 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 26 | 6 25 8 | lspsncl |  |-  ( ( C e. LMod /\ s e. D ) -> ( L ` { s } ) e. ( LSubSp ` C ) ) | 
						
							| 27 | 16 24 26 | syl2anc |  |-  ( ph -> ( L ` { s } ) e. ( LSubSp ` C ) ) | 
						
							| 28 | 1 9 5 25 11 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` C ) ) | 
						
							| 29 | 27 28 | eleqtrrd |  |-  ( ph -> ( L ` { s } ) e. ran M ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( L ` { s } ) e. ran M ) | 
						
							| 31 | 1 9 23 30 | mapdcnvid2 |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( L ` { s } ) ) | 
						
							| 32 | 22 31 | eqtr3d |  |-  ( ( ( ph /\ v e. V ) /\ ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 33 | 32 | ex |  |-  ( ( ph /\ v e. V ) -> ( ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) ) | 
						
							| 34 | 33 | reximdva |  |-  ( ph -> ( E. v e. V ( `' M ` ( L ` { s } ) ) = ( N ` { v } ) -> E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) ) | 
						
							| 35 | 20 34 | mpd |  |-  ( ph -> E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 36 | 11 | 3ad2ant1 |  |-  ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 37 | 12 | 3ad2ant1 |  |-  ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> s e. ( D \ { .0. } ) ) | 
						
							| 38 |  | simp2 |  |-  ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> v e. V ) | 
						
							| 39 |  | simp3 |  |-  ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 36 37 38 39 | hdmaprnlem15N |  |-  ( ( ph /\ v e. V /\ ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) -> s e. ran S ) | 
						
							| 41 | 40 | rexlimdv3a |  |-  ( ph -> ( E. v e. V ( M ` ( N ` { v } ) ) = ( L ` { s } ) -> s e. ran S ) ) | 
						
							| 42 | 35 41 | mpd |  |-  ( ph -> s e. ran S ) |