Metamath Proof Explorer


Theorem hdmaprnlem15N

Description: Lemma for hdmaprnN . Eliminate u . (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h
|- H = ( LHyp ` K )
hdmaprnlem15.u
|- U = ( ( DVecH ` K ) ` W )
hdmaprnlem15.v
|- V = ( Base ` U )
hdmaprnlem15.n
|- N = ( LSpan ` U )
hdmaprnlem15.c
|- C = ( ( LCDual ` K ) ` W )
hdmaprnlem15.d
|- D = ( Base ` C )
hdmaprnlem15.q
|- .0. = ( 0g ` C )
hdmaprnlem15.l
|- L = ( LSpan ` C )
hdmaprnlem15.m
|- M = ( ( mapd ` K ) ` W )
hdmaprnlem15.s
|- S = ( ( HDMap ` K ) ` W )
hdmaprnlem15.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaprnlem15.se
|- ( ph -> s e. ( D \ { .0. } ) )
hdmaprnlem15.ve
|- ( ph -> v e. V )
hdmaprnlem15.e
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
Assertion hdmaprnlem15N
|- ( ph -> s e. ran S )

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h
 |-  H = ( LHyp ` K )
2 hdmaprnlem15.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaprnlem15.v
 |-  V = ( Base ` U )
4 hdmaprnlem15.n
 |-  N = ( LSpan ` U )
5 hdmaprnlem15.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmaprnlem15.d
 |-  D = ( Base ` C )
7 hdmaprnlem15.q
 |-  .0. = ( 0g ` C )
8 hdmaprnlem15.l
 |-  L = ( LSpan ` C )
9 hdmaprnlem15.m
 |-  M = ( ( mapd ` K ) ` W )
10 hdmaprnlem15.s
 |-  S = ( ( HDMap ` K ) ` W )
11 hdmaprnlem15.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 hdmaprnlem15.se
 |-  ( ph -> s e. ( D \ { .0. } ) )
13 hdmaprnlem15.ve
 |-  ( ph -> v e. V )
14 hdmaprnlem15.e
 |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
15 1 2 3 4 11 13 dvh2dim
 |-  ( ph -> E. t e. V -. t e. ( N ` { v } ) )
16 11 3ad2ant1
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( K e. HL /\ W e. H ) )
17 12 3ad2ant1
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ( D \ { .0. } ) )
18 13 3ad2ant1
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> v e. V )
19 14 3ad2ant1
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
20 simp2
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> t e. V )
21 simp3
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> -. t e. ( N ` { v } ) )
22 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
23 eqid
 |-  ( +g ` C ) = ( +g ` C )
24 eqid
 |-  ( +g ` U ) = ( +g ` U )
25 1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24 hdmaprnlem11N
 |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ran S )
26 25 rexlimdv3a
 |-  ( ph -> ( E. t e. V -. t e. ( N ` { v } ) -> s e. ran S ) )
27 15 26 mpd
 |-  ( ph -> s e. ran S )