| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem15.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem15.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem15.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem15.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem15.d |  |-  D = ( Base ` C ) | 
						
							| 7 |  | hdmaprnlem15.q |  |-  .0. = ( 0g ` C ) | 
						
							| 8 |  | hdmaprnlem15.l |  |-  L = ( LSpan ` C ) | 
						
							| 9 |  | hdmaprnlem15.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 10 |  | hdmaprnlem15.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmaprnlem15.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmaprnlem15.se |  |-  ( ph -> s e. ( D \ { .0. } ) ) | 
						
							| 13 |  | hdmaprnlem15.ve |  |-  ( ph -> v e. V ) | 
						
							| 14 |  | hdmaprnlem15.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 15 | 1 2 3 4 11 13 | dvh2dim |  |-  ( ph -> E. t e. V -. t e. ( N ` { v } ) ) | 
						
							| 16 | 11 | 3ad2ant1 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 | 12 | 3ad2ant1 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ( D \ { .0. } ) ) | 
						
							| 18 | 13 | 3ad2ant1 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> v e. V ) | 
						
							| 19 | 14 | 3ad2ant1 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 20 |  | simp2 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> t e. V ) | 
						
							| 21 |  | simp3 |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> -. t e. ( N ` { v } ) ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 23 |  | eqid |  |-  ( +g ` C ) = ( +g ` C ) | 
						
							| 24 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 25 | 1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24 | hdmaprnlem11N |  |-  ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ran S ) | 
						
							| 26 | 25 | rexlimdv3a |  |-  ( ph -> ( E. t e. V -. t e. ( N ` { v } ) -> s e. ran S ) ) | 
						
							| 27 | 15 26 | mpd |  |-  ( ph -> s e. ran S ) |