Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem15.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem15.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem15.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem15.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem15.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem15.d |
|- D = ( Base ` C ) |
7 |
|
hdmaprnlem15.q |
|- .0. = ( 0g ` C ) |
8 |
|
hdmaprnlem15.l |
|- L = ( LSpan ` C ) |
9 |
|
hdmaprnlem15.m |
|- M = ( ( mapd ` K ) ` W ) |
10 |
|
hdmaprnlem15.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmaprnlem15.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmaprnlem15.se |
|- ( ph -> s e. ( D \ { .0. } ) ) |
13 |
|
hdmaprnlem15.ve |
|- ( ph -> v e. V ) |
14 |
|
hdmaprnlem15.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
15 |
1 2 3 4 11 13
|
dvh2dim |
|- ( ph -> E. t e. V -. t e. ( N ` { v } ) ) |
16 |
11
|
3ad2ant1 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
12
|
3ad2ant1 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ( D \ { .0. } ) ) |
18 |
13
|
3ad2ant1 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> v e. V ) |
19 |
14
|
3ad2ant1 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
20 |
|
simp2 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> t e. V ) |
21 |
|
simp3 |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> -. t e. ( N ` { v } ) ) |
22 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
23 |
|
eqid |
|- ( +g ` C ) = ( +g ` C ) |
24 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
25 |
1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24
|
hdmaprnlem11N |
|- ( ( ph /\ t e. V /\ -. t e. ( N ` { v } ) ) -> s e. ran S ) |
26 |
25
|
rexlimdv3a |
|- ( ph -> ( E. t e. V -. t e. ( N ` { v } ) -> s e. ran S ) ) |
27 |
15 26
|
mpd |
|- ( ph -> s e. ran S ) |