Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem15.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem15.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem15.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem15.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem15.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem15.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
7 |
|
hdmaprnlem15.q |
⊢ 0 = ( 0g ‘ 𝐶 ) |
8 |
|
hdmaprnlem15.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
9 |
|
hdmaprnlem15.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmaprnlem15.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmaprnlem15.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmaprnlem15.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ) |
13 |
|
hdmaprnlem15.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
14 |
|
hdmaprnlem15.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
15 |
1 2 3 4 11 13
|
dvh2dim |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑉 ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
16 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) ) |
18 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑣 ∈ 𝑉 ) |
19 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
20 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑡 ∈ 𝑉 ) |
21 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
25 |
1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24
|
hdmaprnlem11N |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑠 ∈ ran 𝑆 ) |
26 |
25
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝑉 ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) → 𝑠 ∈ ran 𝑆 ) ) |
27 |
15 26
|
mpd |
⊢ ( 𝜑 → 𝑠 ∈ ran 𝑆 ) |