| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem15.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem15.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem15.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem15.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem15.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem15.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem15.q | ⊢  0   =  ( 0g ‘ 𝐶 ) | 
						
							| 8 |  | hdmaprnlem15.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 9 |  | hdmaprnlem15.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmaprnlem15.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmaprnlem15.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmaprnlem15.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  {  0  } ) ) | 
						
							| 13 |  | hdmaprnlem15.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem15.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 15 | 1 2 3 4 11 13 | dvh2dim | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝑉 ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 16 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  𝑠  ∈  ( 𝐷  ∖  {  0  } ) ) | 
						
							| 18 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 19 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 20 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  𝑡  ∈  𝑉 ) | 
						
							| 21 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 24 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 25 | 1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24 | hdmaprnlem11N | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑉  ∧  ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) )  →  𝑠  ∈  ran  𝑆 ) | 
						
							| 26 | 25 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝑉 ¬  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } )  →  𝑠  ∈  ran  𝑆 ) ) | 
						
							| 27 | 15 26 | mpd | ⊢ ( 𝜑  →  𝑠  ∈  ran  𝑆 ) |