Metamath Proof Explorer


Theorem hdmaprnlem15N

Description: Lemma for hdmaprnN . Eliminate u . (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaprnlem15.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.v 𝑉 = ( Base ‘ 𝑈 )
hdmaprnlem15.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmaprnlem15.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.d 𝐷 = ( Base ‘ 𝐶 )
hdmaprnlem15.q 0 = ( 0g𝐶 )
hdmaprnlem15.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmaprnlem15.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem15.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaprnlem15.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 0 } ) )
hdmaprnlem15.ve ( 𝜑𝑣𝑉 )
hdmaprnlem15.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
Assertion hdmaprnlem15N ( 𝜑𝑠 ∈ ran 𝑆 )

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaprnlem15.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaprnlem15.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaprnlem15.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmaprnlem15.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmaprnlem15.d 𝐷 = ( Base ‘ 𝐶 )
7 hdmaprnlem15.q 0 = ( 0g𝐶 )
8 hdmaprnlem15.l 𝐿 = ( LSpan ‘ 𝐶 )
9 hdmaprnlem15.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
10 hdmaprnlem15.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmaprnlem15.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmaprnlem15.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 0 } ) )
13 hdmaprnlem15.ve ( 𝜑𝑣𝑉 )
14 hdmaprnlem15.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
15 1 2 3 4 11 13 dvh2dim ( 𝜑 → ∃ 𝑡𝑉 ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) )
16 11 3ad2ant1 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 12 3ad2ant1 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑠 ∈ ( 𝐷 ∖ { 0 } ) )
18 13 3ad2ant1 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑣𝑉 )
19 14 3ad2ant1 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
20 simp2 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑡𝑉 )
21 simp3 ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) )
22 eqid ( 0g𝑈 ) = ( 0g𝑈 )
23 eqid ( +g𝐶 ) = ( +g𝐶 )
24 eqid ( +g𝑈 ) = ( +g𝑈 )
25 1 2 3 4 5 8 9 10 16 17 18 19 20 21 6 7 22 23 24 hdmaprnlem11N ( ( 𝜑𝑡𝑉 ∧ ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) → 𝑠 ∈ ran 𝑆 )
26 25 rexlimdv3a ( 𝜑 → ( ∃ 𝑡𝑉 ¬ 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) → 𝑠 ∈ ran 𝑆 ) )
27 15 26 mpd ( 𝜑𝑠 ∈ ran 𝑆 )