| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
| 12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
| 14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
| 15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 19 |
|
hdmaprnlem3e.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 20 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 21 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 22 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
| 23 |
1 5 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 24 |
1 2 3 5 15 8 9 13
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ) |
| 25 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑠 ∈ 𝐷 ) |
| 26 |
15 18
|
lmodvacl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
| 27 |
23 24 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
hdmaprnlem1N |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ≠ ( 𝐿 ‘ { 𝑠 } ) ) |
| 29 |
15 18 16 6 23 24 25 28
|
lmodindp1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ≠ 𝑄 ) |
| 30 |
|
eldifsn |
⊢ ( ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ↔ ( ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ∧ ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ≠ 𝑄 ) ) |
| 31 |
27 29 30
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 32 |
15 6 16 22 23 31
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
| 33 |
1 7 2 20 5 22 9 32
|
mapdcnvatN |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3uN |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 35 |
34
|
necomd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ≠ ( 𝑁 ‘ { 𝑢 } ) ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3N |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 37 |
36
|
necomd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) |
| 38 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
| 39 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 40 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 41 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 42 |
40 13 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 43 |
1 7 2 39 5 38 9 42
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 44 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 45 |
40 11 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 46 |
1 7 2 39 5 38 9 45
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 47 |
|
eqid |
⊢ ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 ) |
| 48 |
38 47
|
lsmcl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 49 |
23 43 46 48
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 50 |
38
|
lsssssubg |
⊢ ( 𝐶 ∈ LMod → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
| 51 |
23 50
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
| 52 |
51 43
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) |
| 53 |
51 46
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) |
| 54 |
15 6
|
lspsnid |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ) → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
| 55 |
23 24 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
| 56 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
| 57 |
55 56
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ) |
| 58 |
|
eqimss2 |
⊢ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) → ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 59 |
12 58
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 60 |
15 38 6 23 46 25
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ↔ ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 61 |
59 60
|
mpbird |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 62 |
18 47
|
lsmelvali |
⊢ ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) ∧ ( ( 𝑆 ‘ 𝑢 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∧ 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 63 |
52 53 57 61 62
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 64 |
38 6 23 49 63
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 65 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 66 |
1 7 2 39 65 5 47 9 42 45
|
mapdlsm |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 67 |
64 66
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
| 68 |
15 38 6
|
lspsncl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 69 |
23 27 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 70 |
1 7 5 38 9
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) ) |
| 71 |
69 70
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ran 𝑀 ) |
| 72 |
39 65
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 73 |
40 42 45 72
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 74 |
1 7 2 39 9 73
|
mapdcl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ran 𝑀 ) |
| 75 |
1 7 9 71 74
|
mapdcnvordN |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ↔ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
| 76 |
67 75
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
| 77 |
3 4 65 40 13 11
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 , 𝑣 } ) = ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 78 |
1 7 2 39 9 73
|
mapdcnvid1N |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) = ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 79 |
77 78
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 , 𝑣 } ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
| 80 |
76 79
|
sseqtrrd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) ) |
| 81 |
3 19 17 4 20 21 33 13 11 35 37 80
|
lsatfixedN |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
| 82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
| 83 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 84 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑈 ∈ LMod ) |
| 85 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑢 ∈ 𝑉 ) |
| 86 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 87 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑣 ∈ 𝑉 ) |
| 88 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 89 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
| 90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
| 91 |
1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90
|
hdmaprnlem4tN |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑡 ∈ 𝑉 ) |
| 92 |
3 19
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉 ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
| 93 |
84 85 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
| 94 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑢 + 𝑡 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 95 |
84 93 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 96 |
1 7 2 39 83 95
|
mapdcnvid1N |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
| 97 |
82 96
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
| 98 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ran 𝑀 ) |
| 99 |
1 7 2 39 83 95
|
mapdcl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ∈ ran 𝑀 ) |
| 100 |
1 7 83 98 99
|
mapdcnv11N |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ↔ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
| 101 |
97 100
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
| 102 |
101
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
| 103 |
102
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
| 104 |
81 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |