| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 |  | hdmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | hdmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | hdmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | hdmaprnlem1.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 19 |  | hdmaprnlem3e.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 20 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 21 | 1 2 9 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 22 |  | eqid | ⊢ ( LSAtoms ‘ 𝐶 )  =  ( LSAtoms ‘ 𝐶 ) | 
						
							| 23 | 1 5 9 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 24 | 1 2 3 5 15 8 9 13 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑢 )  ∈  𝐷 ) | 
						
							| 25 | 10 | eldifad | ⊢ ( 𝜑  →  𝑠  ∈  𝐷 ) | 
						
							| 26 | 15 18 | lmodvacl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑢 )  ∈  𝐷  ∧  𝑠  ∈  𝐷 )  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 ) | 
						
							| 27 | 23 24 25 26 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | hdmaprnlem1N | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } )  ≠  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 29 | 15 18 16 6 23 24 25 28 | lmodindp1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ≠  𝑄 ) | 
						
							| 30 |  | eldifsn | ⊢ ( ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  ( 𝐷  ∖  { 𝑄 } )  ↔  ( ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷  ∧  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ≠  𝑄 ) ) | 
						
							| 31 | 27 29 30 | sylanbrc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 32 | 15 6 16 22 23 31 | lsatlspsn | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ( LSAtoms ‘ 𝐶 ) ) | 
						
							| 33 | 1 7 2 20 5 22 9 32 | mapdcnvatN | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ∈  ( LSAtoms ‘ 𝑈 ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3uN | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 } )  ≠  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 35 | 34 | necomd | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ≠  ( 𝑁 ‘ { 𝑢 } ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3N | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ≠  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 37 | 36 | necomd | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 38 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 39 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 40 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 41 | 3 39 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑢  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑢 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 42 | 40 13 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 43 | 1 7 2 39 5 38 9 42 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 44 | 3 39 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑣  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 45 | 40 11 44 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 46 | 1 7 2 39 5 38 9 45 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 47 |  | eqid | ⊢ ( LSSum ‘ 𝐶 )  =  ( LSSum ‘ 𝐶 ) | 
						
							| 48 | 38 47 | lsmcl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ∈  ( LSubSp ‘ 𝐶 )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( LSubSp ‘ 𝐶 ) )  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 49 | 23 43 46 48 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 50 | 38 | lsssssubg | ⊢ ( 𝐶  ∈  LMod  →  ( LSubSp ‘ 𝐶 )  ⊆  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 51 | 23 50 | syl | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝐶 )  ⊆  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 52 | 51 43 | sseldd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ∈  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 53 | 51 46 | sseldd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 54 | 15 6 | lspsnid | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑢 )  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑢 )  ∈  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) | 
						
							| 55 | 23 24 54 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑢 )  ∈  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 13 | hdmap10 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) | 
						
							| 57 | 55 56 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑢 )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ) | 
						
							| 58 |  | eqimss2 | ⊢ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } )  →  ( 𝐿 ‘ { 𝑠 } )  ⊆  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 59 | 12 58 | syl | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ⊆  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 60 | 15 38 6 23 46 25 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ↔  ( 𝐿 ‘ { 𝑠 } )  ⊆  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 61 | 59 60 | mpbird | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 62 | 18 47 | lsmelvali | ⊢ ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ∈  ( SubGrp ‘ 𝐶 )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( SubGrp ‘ 𝐶 ) )  ∧  ( ( 𝑆 ‘ 𝑢 )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  ∧  𝑠  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) )  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 63 | 52 53 57 61 62 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 64 | 38 6 23 49 63 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ⊆  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 65 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 66 | 1 7 2 39 65 5 47 9 42 45 | mapdlsm | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) )  =  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 67 | 64 66 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ⊆  ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) | 
						
							| 68 | 15 38 6 | lspsncl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 69 | 23 27 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 70 | 1 7 5 38 9 | mapdrn2 | ⊢ ( 𝜑  →  ran  𝑀  =  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 71 | 69 70 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ran  𝑀 ) | 
						
							| 72 | 39 65 | lsmcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑁 ‘ { 𝑢 } )  ∈  ( LSubSp ‘ 𝑈 )  ∧  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) )  →  ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 73 | 40 42 45 72 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 74 | 1 7 2 39 9 73 | mapdcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) )  ∈  ran  𝑀 ) | 
						
							| 75 | 1 7 9 71 74 | mapdcnvordN | ⊢ ( 𝜑  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ⊆  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) )  ↔  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ⊆  ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) | 
						
							| 76 | 67 75 | mpbird | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ⊆  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) | 
						
							| 77 | 3 4 65 40 13 11 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 ,  𝑣 } )  =  ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 78 | 1 7 2 39 9 73 | mapdcnvid1N | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) )  =  ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 79 | 77 78 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 ,  𝑣 } )  =  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) | 
						
							| 80 | 76 79 | sseqtrrd | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ⊆  ( 𝑁 ‘ { 𝑢 ,  𝑣 } ) ) | 
						
							| 81 | 3 19 17 4 20 21 33 13 11 35 37 80 | lsatfixedN | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) | 
						
							| 82 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) | 
						
							| 83 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 84 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑈  ∈  LMod ) | 
						
							| 85 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑢  ∈  𝑉 ) | 
						
							| 86 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 87 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 88 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 89 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 90 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ) | 
						
							| 91 | 1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90 | hdmaprnlem4tN | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  𝑡  ∈  𝑉 ) | 
						
							| 92 | 3 19 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑢  ∈  𝑉  ∧  𝑡  ∈  𝑉 )  →  ( 𝑢  +  𝑡 )  ∈  𝑉 ) | 
						
							| 93 | 84 85 91 92 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝑢  +  𝑡 )  ∈  𝑉 ) | 
						
							| 94 | 3 39 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑢  +  𝑡 )  ∈  𝑉 )  →  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 95 | 84 93 94 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 96 | 1 7 2 39 83 95 | mapdcnvid1N | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) | 
						
							| 97 | 82 96 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) ) | 
						
							| 98 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ran  𝑀 ) | 
						
							| 99 | 1 7 2 39 83 95 | mapdcl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  ∈  ran  𝑀 ) | 
						
							| 100 | 1 7 83 98 99 | mapdcnv11N | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) )  ↔  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) ) | 
						
							| 101 | 97 100 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  ∧  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) )  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) ) | 
						
							| 103 | 102 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  =  ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } )  →  ∃ 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) ) | 
						
							| 104 | 81 103 | mpd | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) |