Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
19 |
|
hdmaprnlem3e.p |
⊢ + = ( +g ‘ 𝑈 ) |
20 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
21 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
22 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
23 |
1 5 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
24 |
1 2 3 5 15 8 9 13
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ) |
25 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑠 ∈ 𝐷 ) |
26 |
15 18
|
lmodvacl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
27 |
23 24 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
hdmaprnlem1N |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ≠ ( 𝐿 ‘ { 𝑠 } ) ) |
29 |
15 18 16 6 23 24 25 28
|
lmodindp1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ≠ 𝑄 ) |
30 |
|
eldifsn |
⊢ ( ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ↔ ( ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ∧ ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ≠ 𝑄 ) ) |
31 |
27 29 30
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
32 |
15 6 16 22 23 31
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
33 |
1 7 2 20 5 22 9 32
|
mapdcnvatN |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3uN |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
35 |
34
|
necomd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ≠ ( 𝑁 ‘ { 𝑢 } ) ) |
36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3N |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
37 |
36
|
necomd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) |
38 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
39 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
40 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
41 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
42 |
40 13 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
43 |
1 7 2 39 5 38 9 42
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
44 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
45 |
40 11 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
46 |
1 7 2 39 5 38 9 45
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
47 |
|
eqid |
⊢ ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 ) |
48 |
38 47
|
lsmcl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
49 |
23 43 46 48
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
50 |
38
|
lsssssubg |
⊢ ( 𝐶 ∈ LMod → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
51 |
23 50
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐶 ) ⊆ ( SubGrp ‘ 𝐶 ) ) |
52 |
51 43
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) |
53 |
51 46
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) |
54 |
15 6
|
lspsnid |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ) → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
55 |
23 24 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
56 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑢 ) } ) ) |
57 |
55 56
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ) |
58 |
|
eqimss2 |
⊢ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) → ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
59 |
12 58
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
60 |
15 38 6 23 46 25
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ↔ ( 𝐿 ‘ { 𝑠 } ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
61 |
59 60
|
mpbird |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
62 |
18 47
|
lsmelvali |
⊢ ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( SubGrp ‘ 𝐶 ) ) ∧ ( ( 𝑆 ‘ 𝑢 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ∧ 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
63 |
52 53 57 61 62
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
64 |
38 6 23 49 63
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
65 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
66 |
1 7 2 39 65 5 47 9 42 45
|
mapdlsm |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
67 |
64 66
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) |
68 |
15 38 6
|
lspsncl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
69 |
23 27 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
70 |
1 7 5 38 9
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) ) |
71 |
69 70
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ran 𝑀 ) |
72 |
39 65
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { 𝑢 } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
73 |
40 42 45 72
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
74 |
1 7 2 39 9 73
|
mapdcl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ∈ ran 𝑀 ) |
75 |
1 7 9 71 74
|
mapdcnvordN |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ↔ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ⊆ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
76 |
67 75
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
77 |
3 4 65 40 13 11
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 , 𝑣 } ) = ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) |
78 |
1 7 2 39 9 73
|
mapdcnvid1N |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) = ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) |
79 |
77 78
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 , 𝑣 } ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑢 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑣 } ) ) ) ) ) |
80 |
76 79
|
sseqtrrd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ⊆ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) ) |
81 |
3 19 17 4 20 21 33 13 11 35 37 80
|
lsatfixedN |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
83 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
84 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑈 ∈ LMod ) |
85 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑢 ∈ 𝑉 ) |
86 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
87 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑣 ∈ 𝑉 ) |
88 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
89 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
91 |
1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90
|
hdmaprnlem4tN |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → 𝑡 ∈ 𝑉 ) |
92 |
3 19
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉 ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
93 |
84 85 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
94 |
3 39 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑢 + 𝑡 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
95 |
84 93 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
96 |
1 7 2 39 83 95
|
mapdcnvid1N |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) |
97 |
82 96
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
98 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ran 𝑀 ) |
99 |
1 7 2 39 83 95
|
mapdcl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ∈ ran 𝑀 ) |
100 |
1 7 83 98 99
|
mapdcnv11N |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( ◡ 𝑀 ‘ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ↔ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
101 |
97 100
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) ∧ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
102 |
101
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
103 |
102
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) = ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) |
104 |
81 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |