Description: Lemma for hdmaprnN . TODO: This lemma doesn't quite pay for itself even though used six times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaprnlem1.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
hdmaprnlem1.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
hdmaprnlem1.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
hdmaprnlem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
hdmaprnlem1.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
hdmaprnlem1.l | ⊢ 𝐿 = ( LSpan ‘ 𝐶 ) | ||
hdmaprnlem1.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
hdmaprnlem1.s | ⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | ||
hdmaprnlem1.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
hdmaprnlem1.se | ⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) | ||
hdmaprnlem1.ve | ⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) | ||
hdmaprnlem1.e | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) | ||
hdmaprnlem1.ue | ⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) | ||
hdmaprnlem1.un | ⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) | ||
hdmaprnlem1.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | ||
hdmaprnlem1.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | ||
hdmaprnlem1.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
hdmaprnlem1.a | ⊢ ✚ = ( +g ‘ 𝐶 ) | ||
hdmaprnlem1.t2 | ⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) | ||
Assertion | hdmaprnlem4tN | ⊢ ( 𝜑 → 𝑡 ∈ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | hdmaprnlem1.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | hdmaprnlem1.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
4 | hdmaprnlem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
5 | hdmaprnlem1.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
6 | hdmaprnlem1.l | ⊢ 𝐿 = ( LSpan ‘ 𝐶 ) | |
7 | hdmaprnlem1.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
8 | hdmaprnlem1.s | ⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | |
9 | hdmaprnlem1.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
10 | hdmaprnlem1.se | ⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) | |
11 | hdmaprnlem1.ve | ⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) | |
12 | hdmaprnlem1.e | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) | |
13 | hdmaprnlem1.ue | ⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) | |
14 | hdmaprnlem1.un | ⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) | |
15 | hdmaprnlem1.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | |
16 | hdmaprnlem1.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | |
17 | hdmaprnlem1.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
18 | hdmaprnlem1.a | ⊢ ✚ = ( +g ‘ 𝐶 ) | |
19 | hdmaprnlem1.t2 | ⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) | |
20 | 1 2 9 | dvhlmod | ⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
21 | 11 | snssd | ⊢ ( 𝜑 → { 𝑣 } ⊆ 𝑉 ) |
22 | 3 4 | lspssv | ⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑣 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ⊆ 𝑉 ) |
23 | 20 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ⊆ 𝑉 ) |
24 | 23 | ssdifssd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ⊆ 𝑉 ) |
25 | 24 19 | sseldd | ⊢ ( 𝜑 → 𝑡 ∈ 𝑉 ) |