Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hdmaprnlem4tN
Metamath Proof Explorer
Description: Lemma for hdmaprnN . TODO: This lemma doesn't quite pay for itself
even though used six times. Maybe prove this directly instead.
(Contributed by NM , 27-May-2015) (New usage is discouraged.)
Ref
Expression
Hypotheses
hdmaprnlem1.h
hdmaprnlem1.u
hdmaprnlem1.v
hdmaprnlem1.n
hdmaprnlem1.c
hdmaprnlem1.l
hdmaprnlem1.m
hdmaprnlem1.s
hdmaprnlem1.k
hdmaprnlem1.se
hdmaprnlem1.ve
hdmaprnlem1.e
hdmaprnlem1.ue
hdmaprnlem1.un
hdmaprnlem1.d
hdmaprnlem1.q
hdmaprnlem1.o
hdmaprnlem1.a
hdmaprnlem1.t2
Assertion
hdmaprnlem4tN
Proof
Step
Hyp
Ref
Expression
1
hdmaprnlem1.h
2
hdmaprnlem1.u
3
hdmaprnlem1.v
4
hdmaprnlem1.n
5
hdmaprnlem1.c
6
hdmaprnlem1.l
7
hdmaprnlem1.m
8
hdmaprnlem1.s
9
hdmaprnlem1.k
10
hdmaprnlem1.se
11
hdmaprnlem1.ve
12
hdmaprnlem1.e
13
hdmaprnlem1.ue
14
hdmaprnlem1.un
15
hdmaprnlem1.d
16
hdmaprnlem1.q
17
hdmaprnlem1.o
18
hdmaprnlem1.a
19
hdmaprnlem1.t2
20
1 2 9
dvhlmod
21
11
snssd
22
3 4
lspssv
23
20 21 22
syl2anc
24
23
ssdifssd
25
24 19
sseldd