Metamath Proof Explorer


Theorem hdmaprnlem4N

Description: Part of proof of part 12 in Baer p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H = LHyp K
hdmaprnlem1.u U = DVecH K W
hdmaprnlem1.v V = Base U
hdmaprnlem1.n N = LSpan U
hdmaprnlem1.c C = LCDual K W
hdmaprnlem1.l L = LSpan C
hdmaprnlem1.m M = mapd K W
hdmaprnlem1.s S = HDMap K W
hdmaprnlem1.k φ K HL W H
hdmaprnlem1.se φ s D Q
hdmaprnlem1.ve φ v V
hdmaprnlem1.e φ M N v = L s
hdmaprnlem1.ue φ u V
hdmaprnlem1.un φ ¬ u N v
hdmaprnlem1.d D = Base C
hdmaprnlem1.q Q = 0 C
hdmaprnlem1.o 0 ˙ = 0 U
hdmaprnlem1.a ˙ = + C
hdmaprnlem1.t2 φ t N v 0 ˙
Assertion hdmaprnlem4N φ M N t = L s

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H = LHyp K
2 hdmaprnlem1.u U = DVecH K W
3 hdmaprnlem1.v V = Base U
4 hdmaprnlem1.n N = LSpan U
5 hdmaprnlem1.c C = LCDual K W
6 hdmaprnlem1.l L = LSpan C
7 hdmaprnlem1.m M = mapd K W
8 hdmaprnlem1.s S = HDMap K W
9 hdmaprnlem1.k φ K HL W H
10 hdmaprnlem1.se φ s D Q
11 hdmaprnlem1.ve φ v V
12 hdmaprnlem1.e φ M N v = L s
13 hdmaprnlem1.ue φ u V
14 hdmaprnlem1.un φ ¬ u N v
15 hdmaprnlem1.d D = Base C
16 hdmaprnlem1.q Q = 0 C
17 hdmaprnlem1.o 0 ˙ = 0 U
18 hdmaprnlem1.a ˙ = + C
19 hdmaprnlem1.t2 φ t N v 0 ˙
20 eqid LSubSp U = LSubSp U
21 1 2 9 dvhlmod φ U LMod
22 3 20 4 lspsncl U LMod v V N v LSubSp U
23 21 11 22 syl2anc φ N v LSubSp U
24 19 eldifad φ t N v
25 20 4 21 23 24 lspsnel5a φ N t N v
26 1 2 9 dvhlvec φ U LVec
27 3 20 lss1 U LMod V LSubSp U
28 21 27 syl φ V LSubSp U
29 20 4 21 28 11 lspsnel5a φ N v V
30 29 ssdifd φ N v 0 ˙ V 0 ˙
31 30 19 sseldd φ t V 0 ˙
32 3 17 4 26 31 11 lspsncmp φ N t N v N t = N v
33 25 32 mpbid φ N t = N v
34 33 fveq2d φ M N t = M N v
35 34 12 eqtrd φ M N t = L s