| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 |  | hdmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 16 |  | hdmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 17 |  | hdmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 18 |  | hdmaprnlem1.a |  |-  .+b = ( +g ` C ) | 
						
							| 19 |  | hdmaprnlem1.t2 |  |-  ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) | 
						
							| 20 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 21 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 22 | 3 20 4 | lspsncl |  |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 23 | 21 11 22 | syl2anc |  |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 24 | 19 | eldifad |  |-  ( ph -> t e. ( N ` { v } ) ) | 
						
							| 25 | 20 4 21 23 24 | ellspsn5 |  |-  ( ph -> ( N ` { t } ) C_ ( N ` { v } ) ) | 
						
							| 26 | 1 2 9 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 27 | 3 20 | lss1 |  |-  ( U e. LMod -> V e. ( LSubSp ` U ) ) | 
						
							| 28 | 21 27 | syl |  |-  ( ph -> V e. ( LSubSp ` U ) ) | 
						
							| 29 | 20 4 21 28 11 | ellspsn5 |  |-  ( ph -> ( N ` { v } ) C_ V ) | 
						
							| 30 | 29 | ssdifd |  |-  ( ph -> ( ( N ` { v } ) \ { .0. } ) C_ ( V \ { .0. } ) ) | 
						
							| 31 | 30 19 | sseldd |  |-  ( ph -> t e. ( V \ { .0. } ) ) | 
						
							| 32 | 3 17 4 26 31 11 | lspsncmp |  |-  ( ph -> ( ( N ` { t } ) C_ ( N ` { v } ) <-> ( N ` { t } ) = ( N ` { v } ) ) ) | 
						
							| 33 | 25 32 | mpbid |  |-  ( ph -> ( N ` { t } ) = ( N ` { v } ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ph -> ( M ` ( N ` { t } ) ) = ( M ` ( N ` { v } ) ) ) | 
						
							| 35 | 34 12 | eqtrd |  |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) ) |