Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
19 |
|
hdmaprnlem1.t2 |
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
20 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
21 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
22 |
3 20 4
|
lspsncl |
|- ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
23 |
21 11 22
|
syl2anc |
|- ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
24 |
19
|
eldifad |
|- ( ph -> t e. ( N ` { v } ) ) |
25 |
20 4 21 23 24
|
lspsnel5a |
|- ( ph -> ( N ` { t } ) C_ ( N ` { v } ) ) |
26 |
1 2 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
27 |
3 20
|
lss1 |
|- ( U e. LMod -> V e. ( LSubSp ` U ) ) |
28 |
21 27
|
syl |
|- ( ph -> V e. ( LSubSp ` U ) ) |
29 |
20 4 21 28 11
|
lspsnel5a |
|- ( ph -> ( N ` { v } ) C_ V ) |
30 |
29
|
ssdifd |
|- ( ph -> ( ( N ` { v } ) \ { .0. } ) C_ ( V \ { .0. } ) ) |
31 |
30 19
|
sseldd |
|- ( ph -> t e. ( V \ { .0. } ) ) |
32 |
3 17 4 26 31 11
|
lspsncmp |
|- ( ph -> ( ( N ` { t } ) C_ ( N ` { v } ) <-> ( N ` { t } ) = ( N ` { v } ) ) ) |
33 |
25 32
|
mpbid |
|- ( ph -> ( N ` { t } ) = ( N ` { v } ) ) |
34 |
33
|
fveq2d |
|- ( ph -> ( M ` ( N ` { t } ) ) = ( M ` ( N ` { v } ) ) ) |
35 |
34 12
|
eqtrd |
|- ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) ) |