Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
19 |
|
hdmaprnlem1.t2 |
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
20 |
|
hdmaprnlem1.p |
|- .+ = ( +g ` U ) |
21 |
|
hdmaprnlem1.pt |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
22 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4tN |
|- ( ph -> t e. V ) |
24 |
3 20
|
lmodvacl |
|- ( ( U e. LMod /\ u e. V /\ t e. V ) -> ( u .+ t ) e. V ) |
25 |
22 13 23 24
|
syl3anc |
|- ( ph -> ( u .+ t ) e. V ) |
26 |
1 2 3 4 5 6 7 8 9 25
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { ( u .+ t ) } ) ) = ( L ` { ( S ` ( u .+ t ) ) } ) ) |
27 |
1 2 3 20 5 18 8 9 13 23
|
hdmapadd |
|- ( ph -> ( S ` ( u .+ t ) ) = ( ( S ` u ) .+b ( S ` t ) ) ) |
28 |
27
|
sneqd |
|- ( ph -> { ( S ` ( u .+ t ) ) } = { ( ( S ` u ) .+b ( S ` t ) ) } ) |
29 |
28
|
fveq2d |
|- ( ph -> ( L ` { ( S ` ( u .+ t ) ) } ) = ( L ` { ( ( S ` u ) .+b ( S ` t ) ) } ) ) |
30 |
21 26 29
|
3eqtrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( L ` { ( ( S ` u ) .+b ( S ` t ) ) } ) ) |