Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
19 |
|
hdmaprnlem1.t2 |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
20 |
|
hdmaprnlem1.p |
⊢ + = ( +g ‘ 𝑈 ) |
21 |
|
hdmaprnlem1.pt |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
22 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4tN |
⊢ ( 𝜑 → 𝑡 ∈ 𝑉 ) |
24 |
3 20
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉 ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
25 |
22 13 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑢 + 𝑡 ) ∈ 𝑉 ) |
26 |
1 2 3 4 5 6 7 8 9 25
|
hdmap10 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } ) ) |
27 |
1 2 3 20 5 18 8 9 13 23
|
hdmapadd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) = ( ( 𝑆 ‘ 𝑢 ) ✚ ( 𝑆 ‘ 𝑡 ) ) ) |
28 |
27
|
sneqd |
⊢ ( 𝜑 → { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } = { ( ( 𝑆 ‘ 𝑢 ) ✚ ( 𝑆 ‘ 𝑡 ) ) } ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } ) = ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ ( 𝑆 ‘ 𝑡 ) ) } ) ) |
30 |
21 26 29
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ ( 𝑆 ‘ 𝑡 ) ) } ) ) |