Metamath Proof Explorer


Theorem hdmaprnlem6N

Description: Part of proof of part 12 in Baer p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
hdmaprnlem1.o 0 = ( 0g𝑈 )
hdmaprnlem1.a = ( +g𝐶 )
hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
hdmaprnlem1.p + = ( +g𝑈 )
hdmaprnlem1.pt ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) )
Assertion hdmaprnlem6N ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝐿 ‘ { ( ( 𝑆𝑢 ) ( 𝑆𝑡 ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
7 hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
11 hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
12 hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
13 hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
14 hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
15 hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
16 hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
17 hdmaprnlem1.o 0 = ( 0g𝑈 )
18 hdmaprnlem1.a = ( +g𝐶 )
19 hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
20 hdmaprnlem1.p + = ( +g𝑈 )
21 hdmaprnlem1.pt ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) )
22 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN ( 𝜑𝑡𝑉 )
24 3 20 lmodvacl ( ( 𝑈 ∈ LMod ∧ 𝑢𝑉𝑡𝑉 ) → ( 𝑢 + 𝑡 ) ∈ 𝑉 )
25 22 13 23 24 syl3anc ( 𝜑 → ( 𝑢 + 𝑡 ) ∈ 𝑉 )
26 1 2 3 4 5 6 7 8 9 25 hdmap10 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } ) )
27 1 2 3 20 5 18 8 9 13 23 hdmapadd ( 𝜑 → ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) = ( ( 𝑆𝑢 ) ( 𝑆𝑡 ) ) )
28 27 sneqd ( 𝜑 → { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } = { ( ( 𝑆𝑢 ) ( 𝑆𝑡 ) ) } )
29 28 fveq2d ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ ( 𝑢 + 𝑡 ) ) } ) = ( 𝐿 ‘ { ( ( 𝑆𝑢 ) ( 𝑆𝑡 ) ) } ) )
30 21 26 29 3eqtrd ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝐿 ‘ { ( ( 𝑆𝑢 ) ( 𝑆𝑡 ) ) } ) )