Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
19 |
|
hdmaprnlem1.t2 |
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
20 |
|
hdmaprnlem1.p |
|- .+ = ( +g ` U ) |
21 |
|
hdmaprnlem1.pt |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
22 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
23 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
24 |
|
lmodabl |
|- ( C e. LMod -> C e. Abel ) |
25 |
23 24
|
syl |
|- ( ph -> C e. Abel ) |
26 |
1 2 3 5 15 8 9 13
|
hdmapcl |
|- ( ph -> ( S ` u ) e. D ) |
27 |
10
|
eldifad |
|- ( ph -> s e. D ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4tN |
|- ( ph -> t e. V ) |
29 |
1 2 3 5 15 8 9 28
|
hdmapcl |
|- ( ph -> ( S ` t ) e. D ) |
30 |
15 18 22 25 26 27 29 25 26 27 29
|
ablpnpcan |
|- ( ph -> ( ( ( S ` u ) .+b s ) ( -g ` C ) ( ( S ` u ) .+b ( S ` t ) ) ) = ( s ( -g ` C ) ( S ` t ) ) ) |
31 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) |
32 |
23 26 27 31
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. D ) |
33 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
34 |
15 33 6
|
lspsncl |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
35 |
23 32 34
|
syl2anc |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
36 |
15 6
|
lspsnid |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( ( S ` u ) .+b s ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
37 |
23 32 36
|
syl2anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
38 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ ( S ` t ) e. D ) -> ( ( S ` u ) .+b ( S ` t ) ) e. D ) |
39 |
23 26 29 38
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b ( S ` t ) ) e. D ) |
40 |
15 6
|
lspsnid |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b ( S ` t ) ) e. D ) -> ( ( S ` u ) .+b ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b ( S ` t ) ) } ) ) |
41 |
23 39 40
|
syl2anc |
|- ( ph -> ( ( S ` u ) .+b ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b ( S ` t ) ) } ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
hdmaprnlem6N |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( L ` { ( ( S ` u ) .+b ( S ` t ) ) } ) ) |
43 |
41 42
|
eleqtrrd |
|- ( ph -> ( ( S ` u ) .+b ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
44 |
22 33
|
lssvsubcl |
|- ( ( ( C e. LMod /\ ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) /\ ( ( ( S ` u ) .+b s ) e. ( L ` { ( ( S ` u ) .+b s ) } ) /\ ( ( S ` u ) .+b ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) ) -> ( ( ( S ` u ) .+b s ) ( -g ` C ) ( ( S ` u ) .+b ( S ` t ) ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
45 |
23 35 37 43 44
|
syl22anc |
|- ( ph -> ( ( ( S ` u ) .+b s ) ( -g ` C ) ( ( S ` u ) .+b ( S ` t ) ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
46 |
30 45
|
eqeltrrd |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |