Metamath Proof Explorer


Theorem hdmaprnlem8N

Description: Part of proof of part 12 in Baer p. 49 line 19, s-St e. (Ft)* = T*. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h
|- H = ( LHyp ` K )
hdmaprnlem1.u
|- U = ( ( DVecH ` K ) ` W )
hdmaprnlem1.v
|- V = ( Base ` U )
hdmaprnlem1.n
|- N = ( LSpan ` U )
hdmaprnlem1.c
|- C = ( ( LCDual ` K ) ` W )
hdmaprnlem1.l
|- L = ( LSpan ` C )
hdmaprnlem1.m
|- M = ( ( mapd ` K ) ` W )
hdmaprnlem1.s
|- S = ( ( HDMap ` K ) ` W )
hdmaprnlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaprnlem1.se
|- ( ph -> s e. ( D \ { Q } ) )
hdmaprnlem1.ve
|- ( ph -> v e. V )
hdmaprnlem1.e
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
hdmaprnlem1.ue
|- ( ph -> u e. V )
hdmaprnlem1.un
|- ( ph -> -. u e. ( N ` { v } ) )
hdmaprnlem1.d
|- D = ( Base ` C )
hdmaprnlem1.q
|- Q = ( 0g ` C )
hdmaprnlem1.o
|- .0. = ( 0g ` U )
hdmaprnlem1.a
|- .+b = ( +g ` C )
hdmaprnlem1.t2
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) )
hdmaprnlem1.p
|- .+ = ( +g ` U )
hdmaprnlem1.pt
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) )
Assertion hdmaprnlem8N
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h
 |-  H = ( LHyp ` K )
2 hdmaprnlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaprnlem1.v
 |-  V = ( Base ` U )
4 hdmaprnlem1.n
 |-  N = ( LSpan ` U )
5 hdmaprnlem1.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmaprnlem1.l
 |-  L = ( LSpan ` C )
7 hdmaprnlem1.m
 |-  M = ( ( mapd ` K ) ` W )
8 hdmaprnlem1.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmaprnlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmaprnlem1.se
 |-  ( ph -> s e. ( D \ { Q } ) )
11 hdmaprnlem1.ve
 |-  ( ph -> v e. V )
12 hdmaprnlem1.e
 |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
13 hdmaprnlem1.ue
 |-  ( ph -> u e. V )
14 hdmaprnlem1.un
 |-  ( ph -> -. u e. ( N ` { v } ) )
15 hdmaprnlem1.d
 |-  D = ( Base ` C )
16 hdmaprnlem1.q
 |-  Q = ( 0g ` C )
17 hdmaprnlem1.o
 |-  .0. = ( 0g ` U )
18 hdmaprnlem1.a
 |-  .+b = ( +g ` C )
19 hdmaprnlem1.t2
 |-  ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) )
20 hdmaprnlem1.p
 |-  .+ = ( +g ` U )
21 hdmaprnlem1.pt
 |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) )
22 1 5 9 lcdlmod
 |-  ( ph -> C e. LMod )
23 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
24 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
25 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN
 |-  ( ph -> t e. V )
27 3 23 4 lspsncl
 |-  ( ( U e. LMod /\ t e. V ) -> ( N ` { t } ) e. ( LSubSp ` U ) )
28 25 26 27 syl2anc
 |-  ( ph -> ( N ` { t } ) e. ( LSubSp ` U ) )
29 1 7 2 23 5 24 9 28 mapdcl2
 |-  ( ph -> ( M ` ( N ` { t } ) ) e. ( LSubSp ` C ) )
30 10 eldifad
 |-  ( ph -> s e. D )
31 15 6 lspsnid
 |-  ( ( C e. LMod /\ s e. D ) -> s e. ( L ` { s } ) )
32 22 30 31 syl2anc
 |-  ( ph -> s e. ( L ` { s } ) )
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4N
 |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) )
34 32 33 eleqtrrd
 |-  ( ph -> s e. ( M ` ( N ` { t } ) ) )
35 1 2 3 5 15 8 9 26 hdmapcl
 |-  ( ph -> ( S ` t ) e. D )
36 15 6 lspsnid
 |-  ( ( C e. LMod /\ ( S ` t ) e. D ) -> ( S ` t ) e. ( L ` { ( S ` t ) } ) )
37 22 35 36 syl2anc
 |-  ( ph -> ( S ` t ) e. ( L ` { ( S ` t ) } ) )
38 1 2 3 4 5 6 7 8 9 26 hdmap10
 |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { ( S ` t ) } ) )
39 37 38 eleqtrrd
 |-  ( ph -> ( S ` t ) e. ( M ` ( N ` { t } ) ) )
40 eqid
 |-  ( -g ` C ) = ( -g ` C )
41 40 24 lssvsubcl
 |-  ( ( ( C e. LMod /\ ( M ` ( N ` { t } ) ) e. ( LSubSp ` C ) ) /\ ( s e. ( M ` ( N ` { t } ) ) /\ ( S ` t ) e. ( M ` ( N ` { t } ) ) ) ) -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) )
42 22 29 34 39 41 syl22anc
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) )